多项式递推trick
数论trick
\[F_n(x)=\prod_{i=0}^n(1-p^ix)
\]
可以考虑
\[F_n(px)=\prod_{i=0}^{n}(1-p^{i+1}x)=\prod_{i=1}^{n+1}(1-p^ix)=F_n(x)\frac{1-p^{n+1}x}{1-x}
\]
即
\[(1-x)F_n(px)=(1-p^{n+1}x)F_n(x)
\]
考虑\([x^k]\)
\[p^k[x^k]F_n-p^{k-1}[x^{k-1}]F_n=[x^k]F_n-p^{n+1}[x^{k-1}]F_n\\
(p^k-1)[x^k]F_n=(p^{k-1}-p^{n+1})[x^{k-1}]F_n\\
[x^k]F_n=\frac{p^{k-1}-p^{n+1}}{p^k-1}[x^{k-1}]F_n
\]