Golang实现请求限流的几种办法

目录

简单的并发控制

使用计数器实现请求限流

使用golang官方包实现httpserver频率限制

使用Token Bucket(令牌桶算法)实现请求限流


简单的并发控制

利用 channel 的缓冲设定,我们就可以来实现并发的限制。我们只要在执行并发的同时,往一个带有缓冲的 channel 里写入点东西(随便写啥,内容不重要)。让并发的 goroutine在执行完成后把这个 channel 里的东西给读走。这样整个并发的数量就讲控制在这个 channel的缓冲区大小上。

比如我们可以用一个 bool 类型的带缓冲 channel 作为并发限制的计数器。

chLimit := make(chan bool, 1)

 然后在并发执行的地方,每创建一个新的 goroutine,都往 chLimit 里塞个东西。

  1.  
    for i, sleeptime := range input {
  2.  
    chs[i] = make(chan string, 1)
  3.  
    chLimit <- true
  4.  
    go limitFunc(chLimit, chs[i], i, sleeptime, timeout)
  5.  
    }

这里通过 go 关键字并发执行的是新构造的函数。他在执行完后,会把 chLimit的缓冲区里给消费掉一个。

  1.  
    limitFunc := func(chLimit chan bool, ch chan string, task_id, sleeptime, timeout int) {
  2.  
    Run(task_id, sleeptime, timeout, ch)
  3.  
    <-chLimit
  4.  
    }

这样一来,当创建的 goroutine 数量到达 chLimit 的缓冲区上限后。主 goroutine 就挂起阻塞了,直到这些 goroutine 执行完毕,消费掉了 chLimit 缓冲区中的数据,程序才会继续创建新的 goroutine 。我们并发数量限制的目的也就达到了。

以下是完整代码:

  1.  
    package main
  2.  
     
  3.  
    import (
  4.  
    "fmt"
  5.  
    "time"
  6.  
    )
  7.  
     
  8.  
    func Run(task_id, sleeptime, timeout int, ch chan string) {
  9.  
    ch_run := make(chan string)
  10.  
    go run(task_id, sleeptime, ch_run)
  11.  
    select {
  12.  
    case re := <-ch_run:
  13.  
    ch <- re
  14.  
    case <-time.After(time.Duration(timeout) * time.Second):
  15.  
    re := fmt.Sprintf("task id %d , timeout", task_id)
  16.  
    ch <- re
  17.  
    }
  18.  
    }
  19.  
     
  20.  
    func run(task_id, sleeptime int, ch chan string) {
  21.  
     
  22.  
    time.Sleep(time.Duration(sleeptime) * time.Second)
  23.  
    ch <- fmt.Sprintf("task id %d , sleep %d second", task_id, sleeptime)
  24.  
    return
  25.  
    }
  26.  
     
  27.  
    func main() {
  28.  
    input := []int{3, 2, 1}
  29.  
    timeout := 2
  30.  
    chLimit := make(chan bool, 1)
  31.  
    chs := make([]chan string, len(input))
  32.  
    limitFunc := func(chLimit chan bool, ch chan string, task_id, sleeptime, timeout int) {
  33.  
    Run(task_id, sleeptime, timeout, ch)
  34.  
    <-chLimit
  35.  
    }
  36.  
    startTime := time.Now()
  37.  
    fmt.Println("Multirun start")
  38.  
    for i, sleeptime := range input {
  39.  
    chs[i] = make(chan string, 1)
  40.  
    chLimit <- true
  41.  
    go limitFunc(chLimit, chs[i], i, sleeptime, timeout)
  42.  
    }
  43.  
     
  44.  
    for _, ch := range chs {
  45.  
    fmt.Println(<-ch)
  46.  
    }
  47.  
    endTime := time.Now()
  48.  
    fmt.Printf("Multissh finished. Process time %s. Number of task is %d", endTime.Sub(startTime), len(input))
  49.  
    }

运行结果:

  1.  
    Multirun start
  2.  
    task id 0 , timeout
  3.  
    task id 1 , timeout
  4.  
    task id 2 , sleep 1 second
  5.  
    Multissh finished. Process time 5s. Number of task is 3

如果修改并发限制为2:

chLimit := make(chan bool, 2)

运行结果:

  1.  
     
  2.  
    Multirun start
  3.  
    task id 0 , timeout
  4.  
    task id 1 , timeout
  5.  
    task id 2 , sleep 1 second
  6.  
    Multissh finished. Process time 3s. Number of task is 3

使用计数器实现请求限流

限流的要求是在指定的时间间隔内,server 最多只能服务指定数量的请求。实现的原理是我们启动一个计数器,每次服务请求会把计数器加一,同时到达指定的时间间隔后会把计数器清零;这个计数器的实现代码如下所示:

  1.  
    type RequestLimitService struct {
  2.  
    Interval time.Duration
  3.  
    MaxCount int
  4.  
    Lock sync.Mutex
  5.  
    ReqCount int
  6.  
    }
  7.  
     
  8.  
    func NewRequestLimitService(interval time.Duration, maxCnt int) *RequestLimitService {
  9.  
    reqLimit := &RequestLimitService{
  10.  
    Interval: interval,
  11.  
    MaxCount: maxCnt,
  12.  
    }
  13.  
     
  14.  
    go func() {
  15.  
    ticker := time.NewTicker(interval)
  16.  
    for {
  17.  
    <-ticker.C
  18.  
    reqLimit.Lock.Lock()
  19.  
    fmt.Println("Reset Count...")
  20.  
    reqLimit.ReqCount = 0
  21.  
    reqLimit.Lock.Unlock()
  22.  
    }
  23.  
    }()
  24.  
     
  25.  
    return reqLimit
  26.  
    }
  27.  
     
  28.  
    func (reqLimit *RequestLimitService) Increase() {
  29.  
    reqLimit.Lock.Lock()
  30.  
    defer reqLimit.Lock.Unlock()
  31.  
     
  32.  
    reqLimit.ReqCount += 1
  33.  
    }
  34.  
     
  35.  
    func (reqLimit *RequestLimitService) IsAvailable() bool {
  36.  
    reqLimit.Lock.Lock()
  37.  
    defer reqLimit.Lock.Unlock()
  38.  
     
  39.  
    return reqLimit.ReqCount < reqLimit.MaxCount
  40.  
    }

在服务请求的时候, 我们会对当前计数器和阈值进行比较,只有未超过阈值时才进行服务:

  1.  
    var RequestLimit = NewRequestLimitService(10 * time.Second, 5)
  2.  
     
  3.  
    func helloHandler(w http.ResponseWriter, r *http.Request) {
  4.  
    if RequestLimit.IsAvailable() {
  5.  
    RequestLimit.Increase()
  6.  
    fmt.Println(RequestLimit.ReqCount)
  7.  
    io.WriteString(w, "Hello world!\n")
  8.  
    } else {
  9.  
    fmt.Println("Reach request limiting!")
  10.  
    io.WriteString(w, "Reach request limit!\n")
  11.  
    }
  12.  
    }
  13.  
     
  14.  
    func main() {
  15.  
    fmt.Println("Server Started!")
  16.  
    http.HandleFunc("/", helloHandler)
  17.  
    http.ListenAndServe(":8000", nil)
  18.  
    }

 完整代码url:https://github.com/hiberabyss/JustDoIt/blob/master/RequestLimit/request_limit.go

使用golang官方包实现httpserver频率限制

使用golang来编写httpserver时,可以使用官方已经有实现好的包:

  1.  
    import(
  2.  
    "fmt"
  3.  
    "net"
  4.  
    "golang.org/x/net/netutil"
  5.  
    )
  6.  
     
  7.  
    func main() {
  8.  
    l, err := net.Listen("tcp", "127.0.0.1:0")
  9.  
    if err != nil {
  10.  
    fmt.Fatalf("Listen: %v", err)
  11.  
    }
  12.  
    defer l.Close()
  13.  
    l = LimitListener(l, max)
  14.  
     
  15.  
    http.Serve(l, http.HandlerFunc())
  16.  
     
  17.  
    //bla bla bla.................
  18.  
    }

源码如下(url : https://github.com/golang/net/blob/master/netutil/listen.go),基本思路就是为连接数计数,通过make chan来建立一个最大连接数的channel, 每次accept就+1,close时候就-1. 当到达最大连接数时,就等待空闲连接出来之后再accept。

  1.  
    // Copyright 2013 The Go Authors. All rights reserved.
  2.  
    // Use of this source code is governed by a BSD-style
  3.  
    // license that can be found in the LICENSE file.
  4.  
     
  5.  
    // Package netutil provides network utility functions, complementing the more
  6.  
    // common ones in the net package.
  7.  
    package netutil // import "golang.org/x/net/netutil"
  8.  
     
  9.  
    import (
  10.  
    "net"
  11.  
    "sync"
  12.  
    )
  13.  
     
  14.  
    // LimitListener returns a Listener that accepts at most n simultaneous
  15.  
    // connections from the provided Listener.
  16.  
    func LimitListener(l net.Listener, n int) net.Listener {
  17.  
    return &limitListener{
  18.  
    Listener: l,
  19.  
    sem: make(chan struct{}, n),
  20.  
    done: make(chan struct{}),
  21.  
    }
  22.  
    }
  23.  
     
  24.  
    type limitListener struct {
  25.  
    net.Listener
  26.  
    sem chan struct{}
  27.  
    closeOnce sync.Once // ensures the done chan is only closed once
  28.  
    done chan struct{} // no values sent; closed when Close is called
  29.  
    }
  30.  
     
  31.  
    // acquire acquires the limiting semaphore. Returns true if successfully
  32.  
    // accquired, false if the listener is closed and the semaphore is not
  33.  
    // acquired.
  34.  
    func (l *limitListener) acquire() bool {
  35.  
    select {
  36.  
    case <-l.done:
  37.  
    return false
  38.  
    case l.sem <- struct{}{}:
  39.  
    return true
  40.  
    }
  41.  
    }
  42.  
    func (l *limitListener) release() { <-l.sem }
  43.  
     
  44.  
    func (l *limitListener) Accept() (net.Conn, error) {
  45.  
    //如果sem满了,就会阻塞在这
  46.  
    acquired := l.acquire()
  47.  
    // If the semaphore isn't acquired because the listener was closed, expect
  48.  
    // that this call to accept won't block, but immediately return an error.
  49.  
    c, err := l.Listener.Accept()
  50.  
    if err != nil {
  51.  
    if acquired {
  52.  
    l.release()
  53.  
    }
  54.  
    return nil, err
  55.  
    }
  56.  
    return &limitListenerConn{Conn: c, release: l.release}, nil
  57.  
    }
  58.  
     
  59.  
    func (l *limitListener) Close() error {
  60.  
    err := l.Listener.Close()
  61.  
    l.closeOnce.Do(func() { close(l.done) })
  62.  
    return err
  63.  
    }
  64.  
     
  65.  
    type limitListenerConn struct {
  66.  
    net.Conn
  67.  
    releaseOnce sync.Once
  68.  
    release func()
  69.  
    }
  70.  
     
  71.  
    func (l *limitListenerConn) Close() error {
  72.  
    err := l.Conn.Close()
  73.  
    //close时释放占用的sem
  74.  
    l.releaseOnce.Do(l.release)
  75.  
    return err
  76.  
    }

使用Token Bucket(令牌桶算法)实现请求限流

在开发高并发系统时有三把利器用来保护系统:缓存、降级和限流!为了保证在业务高峰期,线上系统也能保证一定的弹性和稳定性,最有效的方案就是进行服务降级了,而限流就是降级系统最常采用的方案之一。

这里为大家推荐一个开源库https://github.com/didip/tollbooth,但是,如果您想要一些简单的、轻量级的或者只是想要学习的东西,实现自己的中间件来处理速率限制并不困难。今天我们就来聊聊如何实现自己的一个限流中间件

首先我们需要安装一个提供了 Token bucket (令牌桶算法)的依赖包,上面提到的toolbooth 的实现也是基于它实现的:

$ go get golang.org/x/time/rate

先看Demo代码的实现:

  1.  
    package main
  2.  
     
  3.  
    import (
  4.  
    "net/http"
  5.  
    "golang.org/x/time/rate"
  6.  
    )
  7.  
     
  8.  
    var limiter = rate.NewLimiter(2, 5)
  9.  
    func limit(next http.Handler) http.Handler {
  10.  
    return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
  11.  
    if limiter.Allow() == false {
  12.  
    http.Error(w, http.StatusText(429), http.StatusTooManyRequests)
  13.  
    return
  14.  
    }
  15.  
    next.ServeHTTP(w, r)
  16.  
    })
  17.  
    }
  18.  
     
  19.  
    func main() {
  20.  
    mux := http.NewServeMux()
  21.  
    mux.HandleFunc("/", okHandler)
  22.  
    // Wrap the servemux with the limit middleware.
  23.  
    http.ListenAndServe(":4000", limit(mux))
  24.  
    }
  25.  
     
  26.  
    func okHandler(w http.ResponseWriter, r *http.Request) {
  27.  
    w.Write([]byte("OK"))
  28.  
    }

然后看看 rate.NewLimiter的源码:

算法描述:用户配置的平均发送速率为r,则每隔1/r秒一个令牌被加入到桶中(每秒会有r个令牌放入桶中),桶中最多可以存放b个令牌。如果令牌到达时令牌桶已经满了,那么这个令牌会被丢弃;

  1.  
    // Copyright 2015 The Go Authors. All rights reserved.
  2.  
    // Use of this source code is governed by a BSD-style
  3.  
    // license that can be found in the LICENSE file.
  4.  
    // Package rate provides a rate limiter.
  5.  
    package rate
  6.  
     
  7.  
    import (
  8.  
    "fmt"
  9.  
    "math"
  10.  
    "sync"
  11.  
    "time"
  12.  
     
  13.  
    "golang.org/x/net/context"
  14.  
    )
  15.  
     
  16.  
    // Limit defines the maximum frequency of some events.
  17.  
    // Limit is represented as number of events per second.
  18.  
    // A zero Limit allows no events.
  19.  
    type Limit float64
  20.  
     
  21.  
    // Inf is the infinite rate limit; it allows all events (even if burst is zero).
  22.  
    const Inf = Limit(math.MaxFloat64)
  23.  
     
  24.  
    // Every converts a minimum time interval between events to a Limit.
  25.  
    func Every(interval time.Duration) Limit {
  26.  
    if interval <= 0 {
  27.  
    return Inf
  28.  
    }
  29.  
    return 1 / Limit(interval.Seconds())
  30.  
    }
  31.  
     
  32.  
    // A Limiter controls how frequently events are allowed to happen.
  33.  
    // It implements a "token bucket" of size b, initially full and refilled
  34.  
    // at rate r tokens per second.
  35.  
    // Informally, in any large enough time interval, the Limiter limits the
  36.  
    // rate to r tokens per second, with a maximum burst size of b events.
  37.  
    // As a special case, if r == Inf (the infinite rate), b is ignored.
  38.  
    // See https://en.wikipedia.org/wiki/Token_bucket for more about token buckets.
  39.  
    //
  40.  
    // The zero value is a valid Limiter, but it will reject all events.
  41.  
    // Use NewLimiter to create non-zero Limiters.
  42.  
    //
  43.  
    // Limiter has three main methods, Allow, Reserve, and Wait.
  44.  
    // Most callers should use Wait.
  45.  
    //
  46.  
    // Each of the three methods consumes a single token.
  47.  
    // They differ in their behavior when no token is available.
  48.  
    // If no token is available, Allow returns false.
  49.  
    // If no token is available, Reserve returns a reservation for a future token
  50.  
    // and the amount of time the caller must wait before using it.
  51.  
    // If no token is available, Wait blocks until one can be obtained
  52.  
    // or its associated context.Context is canceled.
  53.  
    //
  54.  
    // The methods AllowN, ReserveN, and WaitN consume n tokens.
  55.  
    type Limiter struct {
  56.  
    //maximum token, token num per second
  57.  
    limit Limit
  58.  
    //burst field, max token num
  59.  
    burst int
  60.  
    mu sync.Mutex
  61.  
    //tokens num, change
  62.  
    tokens float64
  63.  
    // last is the last time the limiter's tokens field was updated
  64.  
    last time.Time
  65.  
    // lastEvent is the latest time of a rate-limited event (past or future)
  66.  
    lastEvent time.Time
  67.  
    }
  68.  
     
  69.  
    // Limit returns the maximum overall event rate.
  70.  
    func (lim *Limiter) Limit() Limit {
  71.  
    lim.mu.Lock()
  72.  
    defer lim.mu.Unlock()
  73.  
    return lim.limit
  74.  
    }
  75.  
     
  76.  
    // Burst returns the maximum burst size. Burst is the maximum number of tokens
  77.  
    // that can be consumed in a single call to Allow, Reserve, or Wait, so higher
  78.  
    // Burst values allow more events to happen at once.
  79.  
    // A zero Burst allows no events, unless limit == Inf.
  80.  
    func (lim *Limiter) Burst() int {
  81.  
    return lim.burst
  82.  
    }
  83.  
     
  84.  
    // NewLimiter returns a new Limiter that allows events up to rate r and permits
  85.  
    // bursts of at most b tokens.
  86.  
    func NewLimiter(r Limit, b int) *Limiter {
  87.  
    return &Limiter{
  88.  
    limit: r,
  89.  
    burst: b,
  90.  
    }
  91.  
    }
  92.  
     
  93.  
    // Allow is shorthand for AllowN(time.Now(), 1).
  94.  
    func (lim *Limiter) Allow() bool {
  95.  
    return lim.AllowN(time.Now(), 1)
  96.  
    }
  97.  
     
  98.  
    // AllowN reports whether n events may happen at time now.
  99.  
    // Use this method if you intend to drop / skip events that exceed the rate limit.
  100.  
    // Otherwise use Reserve or Wait.
  101.  
    func (lim *Limiter) AllowN(now time.Time, n int) bool {
  102.  
    return lim.reserveN(now, n, 0).ok
  103.  
    }
  104.  
     
  105.  
    // A Reservation holds information about events that are permitted by a Limiter to happen after a delay.
  106.  
    // A Reservation may be canceled, which may enable the Limiter to permit additional events.
  107.  
    type Reservation struct {
  108.  
    ok bool
  109.  
    lim *Limiter
  110.  
    tokens int
  111.  
    //This is the time to action
  112.  
    timeToAct time.Time
  113.  
    // This is the Limit at reservation time, it can change later.
  114.  
    limit Limit
  115.  
    }
  116.  
     
  117.  
    // OK returns whether the limiter can provide the requested number of tokens
  118.  
    // within the maximum wait time. If OK is false, Delay returns InfDuration, and
  119.  
    // Cancel does nothing.
  120.  
    func (r *Reservation) OK() bool {
  121.  
    return r.ok
  122.  
    }
  123.  
     
  124.  
    // Delay is shorthand for DelayFrom(time.Now()).
  125.  
    func (r *Reservation) Delay() time.Duration {
  126.  
    return r.DelayFrom(time.Now())
  127.  
    }
  128.  
     
  129.  
    // InfDuration is the duration returned by Delay when a Reservation is not OK.
  130.  
    const InfDuration = time.Duration(1<<63 - 1)
  131.  
     
  132.  
    // DelayFrom returns the duration for which the reservation holder must wait
  133.  
    // before taking the reserved action. Zero duration means act immediately.
  134.  
    // InfDuration means the limiter cannot grant the tokens requested in this
  135.  
    // Reservation within the maximum wait time.
  136.  
    func (r *Reservation) DelayFrom(now time.Time) time.Duration {
  137.  
    if !r.ok {
  138.  
    return InfDuration
  139.  
    }
  140.  
    delay := r.timeToAct.Sub(now)
  141.  
    if delay < 0 {
  142.  
    return 0
  143.  
    }
  144.  
    return delay
  145.  
    }
  146.  
     
  147.  
    // Cancel is shorthand for CancelAt(time.Now()).
  148.  
    func (r *Reservation) Cancel() {
  149.  
    r.CancelAt(time.Now())
  150.  
    return
  151.  
    }
  152.  
     
  153.  
    // CancelAt indicates that the reservation holder will not perform the reserved action
  154.  
    // and reverses the effects of this Reservation on the rate limit as much as possible,
  155.  
    // considering that other reservations may have already been made.
  156.  
    func (r *Reservation) CancelAt(now time.Time) {
  157.  
    if !r.ok {
  158.  
    return
  159.  
    }
  160.  
    r.lim.mu.Lock()
  161.  
    defer r.lim.mu.Unlock()
  162.  
    if r.lim.limit == Inf || r.tokens == 0 || r.timeToAct.Before(now) {
  163.  
    return
  164.  
    }
  165.  
    // calculate tokens to restore
  166.  
    // The duration between lim.lastEvent and r.timeToAct tells us how many tokens were reserved
  167.  
    // after r was obtained. These tokens should not be restored.
  168.  
    restoreTokens := float64(r.tokens) - r.limit.tokensFromDuration(r.lim.lastEvent.Sub(r.timeToAct))
  169.  
    if restoreTokens <= 0 {
  170.  
    return
  171.  
    }
  172.  
    // advance time to now
  173.  
    now, _, tokens := r.lim.advance(now)
  174.  
    // calculate new number of tokens
  175.  
    tokens += restoreTokens
  176.  
    if burst := float64(r.lim.burst); tokens > burst {
  177.  
    tokens = burst
  178.  
    }
  179.  
    // update state
  180.  
    r.lim.last = now
  181.  
    r.lim.tokens = tokens
  182.  
    if r.timeToAct == r.lim.lastEvent {
  183.  
    prevEvent := r.timeToAct.Add(r.limit.durationFromTokens(float64(-r.tokens)))
  184.  
    if !prevEvent.Before(now) {
  185.  
    r.lim.lastEvent = prevEvent
  186.  
    }
  187.  
    }
  188.  
    return
  189.  
    }
  190.  
     
  191.  
    // Reserve is shorthand for ReserveN(time.Now(), 1).
  192.  
    func (lim *Limiter) Reserve() *Reservation {
  193.  
    return lim.ReserveN(time.Now(), 1)
  194.  
    }
  195.  
     
  196.  
    // ReserveN returns a Reservation that indicates how long the caller must wait before n events happen.
  197.  
    // The Limiter takes this Reservation into account when allowing future events.
  198.  
    // ReserveN returns false if n exceeds the Limiter's burst size.
  199.  
    // Usage example:
  200.  
    // r, ok := lim.ReserveN(time.Now(), 1)
  201.  
    // if !ok {
  202.  
    // // Not allowed to act! Did you remember to set lim.burst to be > 0 ?
  203.  
    // }
  204.  
    // time.Sleep(r.Delay())
  205.  
    // Act()
  206.  
    // Use this method if you wish to wait and slow down in accordance with the rate limit without dropping events.
  207.  
    // If you need to respect a deadline or cancel the delay, use Wait instead.
  208.  
    // To drop or skip events exceeding rate limit, use Allow instead.
  209.  
    func (lim *Limiter) ReserveN(now time.Time, n int) *Reservation {
  210.  
    r := lim.reserveN(now, n, InfDuration)
  211.  
    return &r
  212.  
    }
  213.  
     
  214.  
    // Wait is shorthand for WaitN(ctx, 1).
  215.  
    func (lim *Limiter) Wait(ctx context.Context) (err error) {
  216.  
    return lim.WaitN(ctx, 1)
  217.  
    }
  218.  
     
  219.  
    // WaitN blocks until lim permits n events to happen.
  220.  
    // It returns an error if n exceeds the Limiter's burst size, the Context is
  221.  
    // canceled, or the expected wait time exceeds the Context's Deadline.
  222.  
    func (lim *Limiter) WaitN(ctx context.Context, n int) (err error) {
  223.  
    if n > lim.burst {
  224.  
    return fmt.Errorf("rate: Wait(n=%d) exceeds limiter's burst %d", n, lim.burst)
  225.  
    }
  226.  
    // Check if ctx is already cancelled
  227.  
    select {
  228.  
    case <-ctx.Done():
  229.  
    return ctx.Err()
  230.  
    default:
  231.  
    }
  232.  
    // Determine wait limit
  233.  
    now := time.Now()
  234.  
    waitLimit := InfDuration
  235.  
    if deadline, ok := ctx.Deadline(); ok {
  236.  
    waitLimit = deadline.Sub(now)
  237.  
    }
  238.  
    // Reserve
  239.  
    r := lim.reserveN(now, n, waitLimit)
  240.  
    if !r.ok {
  241.  
    return fmt.Errorf("rate: Wait(n=%d) would exceed context deadline", n)
  242.  
    }
  243.  
    // Wait
  244.  
    t := time.NewTimer(r.DelayFrom(now))
  245.  
    defer t.Stop()
  246.  
    select {
  247.  
    case <-t.C:
  248.  
    // We can proceed.
  249.  
    return nil
  250.  
    case <-ctx.Done():
  251.  
    // Context was canceled before we could proceed. Cancel the
  252.  
    // reservation, which may permit other events to proceed sooner.
  253.  
    r.Cancel()
  254.  
    return ctx.Err()
  255.  
    }
  256.  
    }
  257.  
     
  258.  
    // SetLimit is shorthand for SetLimitAt(time.Now(), newLimit).
  259.  
    func (lim *Limiter) SetLimit(newLimit Limit) {
  260.  
    lim.SetLimitAt(time.Now(), newLimit)
  261.  
    }
  262.  
     
  263.  
    // SetLimitAt sets a new Limit for the limiter. The new Limit, and Burst, may be violated
  264.  
    // or underutilized by those which reserved (using Reserve or Wait) but did not yet act
  265.  
    // before SetLimitAt was called.
  266.  
    func (lim *Limiter) SetLimitAt(now time.Time, newLimit Limit) {
  267.  
    lim.mu.Lock()
  268.  
    defer lim.mu.Unlock()
  269.  
    now, _, tokens := lim.advance(now)
  270.  
    lim.last = now
  271.  
    lim.tokens = tokens
  272.  
    lim.limit = newLimit
  273.  
    }
  274.  
     
  275.  
    // reserveN is a helper method for AllowN, ReserveN, and WaitN.
  276.  
    // maxFutureReserve specifies the maximum reservation wait duration allowed.
  277.  
    // reserveN returns Reservation, not *Reservation, to avoid allocation in AllowN and WaitN.
  278.  
    func (lim *Limiter) reserveN(now time.Time, n int, maxFutureReserve time.Duration) Reservation {
  279.  
    lim.mu.Lock()
  280.  
    defer lim.mu.Unlock()
  281.  
    if lim.limit == Inf {
  282.  
    return Reservation{
  283.  
    ok: true,
  284.  
    lim: lim,
  285.  
    tokens: n,
  286.  
    timeToAct: now,
  287.  
    }
  288.  
    }
  289.  
    now, last, tokens := lim.advance(now)
  290.  
    // Calculate the remaining number of tokens resulting from the request.
  291.  
    tokens -= float64(n)
  292.  
    // Calculate the wait duration
  293.  
    var waitDuration time.Duration
  294.  
    if tokens < 0 {
  295.  
    waitDuration = lim.limit.durationFromTokens(-tokens)
  296.  
    }
  297.  
    // Decide result
  298.  
    ok := n <= lim.burst && waitDuration <= maxFutureReserve
  299.  
    // Prepare reservation
  300.  
    r := Reservation{
  301.  
    ok: ok,
  302.  
    lim: lim,
  303.  
    limit: lim.limit,
  304.  
    }
  305.  
    if ok {
  306.  
    r.tokens = n
  307.  
    r.timeToAct = now.Add(waitDuration)
  308.  
    }
  309.  
    // Update state
  310.  
    if ok {
  311.  
    lim.last = now
  312.  
    lim.tokens = tokens
  313.  
    lim.lastEvent = r.timeToAct
  314.  
    } else {
  315.  
    lim.last = last
  316.  
    }
  317.  
    return r
  318.  
    }
  319.  
     
  320.  
    // advance calculates and returns an updated state for lim resulting from the passage of time.
  321.  
    // lim is not changed.
  322.  
    func (lim *Limiter) advance(now time.Time) (newNow time.Time, newLast time.Time, newTokens float64) {
  323.  
    last := lim.last
  324.  
    if now.Before(last) {
  325.  
    last = now
  326.  
    }
  327.  
    // Avoid making delta overflow below when last is very old.
  328.  
    maxElapsed := lim.limit.durationFromTokens(float64(lim.burst) - lim.tokens)
  329.  
    elapsed := now.Sub(last)
  330.  
    if elapsed > maxElapsed {
  331.  
    elapsed = maxElapsed
  332.  
    }
  333.  
    // Calculate the new number of tokens, due to time that passed.
  334.  
    delta := lim.limit.tokensFromDuration(elapsed)
  335.  
    tokens := lim.tokens + delta
  336.  
    if burst := float64(lim.burst); tokens > burst {
  337.  
    tokens = burst
  338.  
    }
  339.  
    return now, last, tokens
  340.  
    }
  341.  
     
  342.  
    // durationFromTokens is a unit conversion function from the number of tokens to the duration
  343.  
    // of time it takes to accumulate them at a rate of limit tokens per second.
  344.  
    func (limit Limit) durationFromTokens(tokens float64) time.Duration {
  345.  
    seconds := tokens / float64(limit)
  346.  
    return time.Nanosecond * time.Duration(1e9*seconds)
  347.  
    }
  348.  
     
  349.  
    // tokensFromDuration is a unit conversion function from a time duration to the number of tokens
  350.  
    // which could be accumulated during that duration at a rate of limit tokens per second.
  351.  
    func (limit Limit) tokensFromDuration(d time.Duration) float64 {
  352.  
    return d.Seconds() * float64(limit)
  353.  
    }

虽然在某些情况下使用单个全局速率限制器非常有用,但另一种常见情况是基于IP地址或API密钥等标识符为每个用户实施速率限制器。我们将使用IP地址作为标识符。简单实现代码如下:

  1.  
    package main
  2.  
    import (
  3.  
    "net/http"
  4.  
    "sync"
  5.  
    "time"
  6.  
    "golang.org/x/time/rate"
  7.  
    )
  8.  
    // Create a custom visitor struct which holds the rate limiter for each
  9.  
    // visitor and the last time that the visitor was seen.
  10.  
    type visitor struct {
  11.  
    limiter *rate.Limiter
  12.  
    lastSeen time.Time
  13.  
    }
  14.  
    // Change the the map to hold values of the type visitor.
  15.  
    var visitors = make(map[string]*visitor)
  16.  
    var mtx sync.Mutex
  17.  
    // Run a background goroutine to remove old entries from the visitors map.
  18.  
    func init() {
  19.  
    go cleanupVisitors()
  20.  
    }
  21.  
    func addVisitor(ip string) *rate.Limiter {
  22.  
    limiter := rate.NewLimiter(2, 5)
  23.  
    mtx.Lock()
  24.  
    // Include the current time when creating a new visitor.
  25.  
    visitors[ip] = &visitor{limiter, time.Now()}
  26.  
    mtx.Unlock()
  27.  
    return limiter
  28.  
    }
  29.  
    func getVisitor(ip string) *rate.Limiter {
  30.  
    mtx.Lock()
  31.  
    v, exists := visitors[ip]
  32.  
    if !exists {
  33.  
    mtx.Unlock()
  34.  
    return addVisitor(ip)
  35.  
    }
  36.  
    // Update the last seen time for the visitor.
  37.  
    v.lastSeen = time.Now()
  38.  
    mtx.Unlock()
  39.  
    return v.limiter
  40.  
    }
  41.  
    // Every minute check the map for visitors that haven't been seen for
  42.  
    // more than 3 minutes and delete the entries.
  43.  
    func cleanupVisitors() {
  44.  
    for {
  45.  
    time.Sleep(time.Minute)
  46.  
    mtx.Lock()
  47.  
    for ip, v := range visitors {
  48.  
    if time.Now().Sub(v.lastSeen) > 3*time.Minute {
  49.  
    delete(visitors, ip)
  50.  
    }
  51.  
    }
  52.  
    mtx.Unlock()
  53.  
    }
  54.  
    }
  55.  
    func limit(next http.Handler) http.Handler {
  56.  
    return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
  57.  
    limiter := getVisitor(r.RemoteAddr)
  58.  
    if limiter.Allow() == false {
  59.  
    http.Error(w, http.StatusText(429), http.StatusTooManyRequests)
  60.  
    return
  61.  
    }
  62.  
    next.ServeHTTP(w, r)
  63.  
    })
  64.  
    }

 

转载: https://blog.csdn.net/micl200110041/article/details/82013032

posted @ 2020-11-01 18:27  zbs666  阅读(660)  评论(0编辑  收藏  举报