折半查找
二分查找要求:线性表是有序表,即表中结点按关键字有序,并且要用向量作为表的存储结构
二分查找就是将查找的键和子数组的中间键作比较,如果被查找的键小于中间键,就在左子数组继续查找;如果大于中间键,就在右子数组中查找,否则中间键就是要找的元素。
/** * 二分查找,找到该值在数组中的下标,否则为-1 */ static int binarySerach(int[] array, int key) { int left = 0; int right = array.length - 1; // 这里必须是 <= while (left <= right) { int mid = (left + right) / 2; if (array[mid] == key) { return mid; } else if (array[mid] < key) { left = mid + 1; } else { right = mid - 1; } } return -1; }
注意:代码中的判断条件必须是while (left <= right),否则的话判断条件不完整,比如:array[3] = {1, 3, 5};待查找的键为5,此时在(low < high)条件下就会找不到,因为low和high相等时,指向元素5,但是此时条件不成立,没有进入while()中。
二分查找的优点
折半查找的时间复杂度为O(logn),远远好于顺序查找的O(n)。
二分查找的缺点
虽然二分查找的效率高,但是要将表按关键字排序。而排序本身是一种很费时的运算。既使采用高效率的排序方法也要花费O(nlgn)的时间。
立志如山 静心求实