HashMap源码
HashMap采用数组+链表+红黑树实现,当链表长度超过阈值(8)时,将链表转换为红黑树,大大减少了查找时间。

链表的实现

Node是HashMap的一个内部类,实现Map.Entry接口,本质就是一个映射(键值对)。上图中每个黑色圆点就是一个Node对象。来看具体代码:
/**
node是单向链表节点,实现Map.Entry接口 */ static class Node<K,V> implements Map.Entry<K,V> { final int hash; final K key; V value; Node<K,V> next; Node(int hash, K key, V value, Node<K,V> next) { this.hash = hash; this.key = key; this.value = value; this.next = next; } public final K getKey() { return key; } public final V getValue() { return value; } public final String toString() { return key + "=" + value; } public final int hashCode() { return Objects.hashCode(key) ^ Objects.hashCode(value); } public final V setValue(V newValue) { V oldValue = value; value = newValue; return oldValue; } public final boolean equals(Object o) { if (o == this) return true; if (o instanceof Map.Entry) { Map.Entry<?,?> e = (Map.Entry<?,?>)o; if (Objects.equals(key, e.getKey()) && Objects.equals(value, e.getValue())) return true; } return false; } }
node中包含一个next变量,就是链表的关键点,hash结果相同的元素就是通过这个next进行关联的。
红黑树
static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> { TreeNode<K,V> parent; // red-black tree links TreeNode<K,V> left; TreeNode<K,V> right; TreeNode<K,V> prev; // needed to unlink next upon deletion boolean red; TreeNode(int hash, K key, V val, Node<K,V> next) { super(hash, key, val, next); } final TreeNode<K,V> root() { for (TreeNode<K,V> r = this, p;;) { if ((p = r.parent) == null) return r; r = p; } } }
static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> { TreeNode<K,V> parent; // red-black tree links TreeNode<K,V> left; TreeNode<K,V> right; TreeNode<K,V> prev; // needed to unlink next upon deletion boolean red; TreeNode(int hash, K key, V val, Node<K,V> next) { super(hash, key, val, next); } final TreeNode<K,V> root() { for (TreeNode<K,V> r = this, p;;) { if ((p = r.parent) == null) return r; r = p; } } }
红黑树比链表多了四个变量,parent父节点、left左节点、right右节点、prev上一个同级节点
位桶
transient Node<k,v>[] table;//存储(位桶)的数组
HashMap类中有一个非常重要的字段,就是 Node[] table,即哈希桶数组,明显它是一个Node的数组。
类继承关系
public class HashMap<K,V> extends AbstractMap<K,V> implements Map<K,V>, Cloneable, Serializable
类的属性
/** * The default initial capacity - MUST be a power of two. */ static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16 /** * The maximum capacity, used if a higher value is implicitly specified * by either of the constructors with arguments. * MUST be a power of two <= 1<<30. */ static final int MAXIMUM_CAPACITY = 1 << 30; /** * The load factor used when none specified in constructor. */ static final float DEFAULT_LOAD_FACTOR = 0.75f; /** * The bin count threshold for using a tree rather than list for a * bin. Bins are converted to trees when adding an element to a * bin with at least this many nodes. The value must be greater * than 2 and should be at least 8 to mesh with(紧密融合) assumptions in * tree removal about conversion back to plain bins upon shrinkage. */ static final int TREEIFY_THRESHOLD = 8; //当桶上的节点数大于阈值转化为红黑树 /** * The bin count threshold for untreeifying a (split) bin during a * resize operation. Should be less than TREEIFY_THRESHOLD, and at * most 6 to mesh with shrinkage detection under removal. */ static final int UNTREEIFY_THRESHOLD = 6;//当桶上节点数小于阈值将红黑树转化为链表 /** * The smallest table capacity for which bins may be treeified. * (Otherwise the table is resized if too many nodes in a bin.) * Should be at least 4 * TREEIFY_THRESHOLD to avoid conflicts * between resizing and treeification thresholds. */ static final int MIN_TREEIFY_CAPACITY = 64; //桶结构转化为红黑树,最小的table大小 /** * The table, initialized on first use, and resized as * necessary. When allocated, length is always a power of two. * (We also tolerate length zero in some operations to allow * bootstrapping mechanics that are currently not needed.) */ transient Node<K,V>[] table; //存储元素的数组,总是2的幂 /** * Holds cached entrySet(). Note that AbstractMap fields are used * for keySet() and values(). */ transient Set<Map.Entry<K,V>> entrySet; // /** * The number of key-value mappings contained in this map. */ transient int size; /** * The number of times this HashMap has been structurally modified * Structural modifications are those that change the number of mappings in * the HashMap or otherwise modify its internal structure (e.g., * rehash). This field is used to make iterators on Collection-views of * the HashMap fail-fast. (See ConcurrentModificationException). */ transient int modCount; /** * The next size value at which to resize (capacity * load factor). * * @serial */ // (The javadoc description is true upon serialization. // Additionally, if the table array has not been allocated, this // field holds the initial array capacity, or zero signifying // DEFAULT_INITIAL_CAPACITY.) int threshold; /** * The load factor for the hash table. */ final float loadFactor;
HashMap(int, float)型构造函数
public HashMap(int initialCapacity, float loadFactor) { if (initialCapacity < 0) throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY) initialCapacity = MAXIMUM_CAPACITY; if (loadFactor <= 0 || Float.isNaN(loadFactor)) throw new IllegalArgumentException("Illegal load factor: " + loadFactor); this.loadFactor = loadFactor; this.threshold = tableSizeFor(initialCapacity); }
/** * Returns a power of two size for the given target capacity. */ static final int tableSizeFor(int cap) { int n = cap - 1; n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16; return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1; } tableSizeFor(initialCapacity)返回大于initialCapacity的最小的二次幂数值。
HashMap(Map<? extends K>)型构造函数
public HashMap(Map<? extends K, ? extends V> m){ // 初始化填充因子
this.loadFactor = DEFAULT_LOAD_FACTOR;
// 将m中的所有元素添加至HashMap中
putMapEntries(m, false);
}
final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
int s = m.size(); //容器内元素的实际个数
if (s > 0) {
if (table == null) { // pre-size
//table没有初始化,s为m的实际元素的个数
float ft = ((float)s / loadFactor) + 1.0F;
int t = ((ft < (float)MAXIMUM_CAPACITY) ? (int)ft : MAXIMUM_CAPACITY);
if (t > threshold)
threshold = tableSizeFor(t);
}
else if (s > threshold)
resize();
for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
K key = e.getKey();
V value = e.getValue();
putVal(hash(key), key, value, false, evict);
}
}
}
hash算法
static final int hash(Object key) { int h; return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16); }
首先获取对象的hashCode()值,然后将hashCode值右移16位,然后将右移后的值与原来的hashCode做异或运算,返回结果。(其中h>>>16,在JDK1.8中,优化了高位运算的算法,使用了零扩展,无论正数还是负数,都在高位插入0)。
putVal方法
HashMap并没有直接提供putVal接口给用户调用,而是提供的put方法,而put方法就是通过putVal来插入元素的。
public V put(K key, V value) { // 对key的hashCode()做hash return putVal(hash(key), key, value, false, true); }
putVal方法执行过程通过下图来理解:

①.判断键值对数组table[i]是否为空或为null,否则执行resize()进行扩容;
②.根据键值key计算hash值得到插入的数组索引i,如果table[i]==null,直接新建节点添加,转向⑥,如果table[i]不为空,转向③;
③.判断table[i]的首个元素是否和key一样,如果相同直接覆盖value,否则转向④,这里的相同指的是hashCode以及equals;
④.判断table[i] 是否为treeNode,即table[i] 是否是红黑树,如果是红黑树,则直接在树中插入键值对,否则转向⑤;
⑤.遍历table[i],判断链表长度是否大于8,大于8的话把链表转换为红黑树,在红黑树中执行插入操作,否则进行链表的插入操作;遍历过程中若发现key已经存在直接覆盖value即可;
⑥.插入成功后,判断实际存在的键值对数量size是否超多最大容量threshold,如果超过,进行扩容。
往哈希表里插入一个节点的putVal函数,如果参数onlyIfAbsent是true,那么不会覆盖相同key的值value。如果evict是false。那么表示是在初始化时调用的
final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) { Node<K,V>[] tab; Node<K,V> p; int n, i;
//table为null或长度为0,进行扩容 if ((tab = table) == null || (n = tab.length) == 0) n = (tab = resize()).length;
//确定放在桶中的位置,桶为空,新生成节点放入桶中 if ((p = tab[i = (n - 1) & hash]) == null) tab[i] = newNode(hash, key, value, null); else { Node<K,V> e; K k;
//节点key存在直接覆盖掉value if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) e = p; //桶中第一个元素的hash值相等,key相等,用e记录下来 else if (p instanceof TreeNode)
//红黑树节点,放入红黑树中 e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value); else {
//链表节点 for (int binCount = 0; ; ++binCount) { if ((e = p.next) == null) {//到达链表末尾,在为不插入新的节点 p.next = newNode(hash, key, value, null);
//节点数量到达阈值,转化为红黑树 if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st treeifyBin(tab, hash); break; }
//判断链表中节点key值与插入的元素的key值是否相等 if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) break; p = e; } }
//表示在桶中找到key值、hash值与插入元素相等节点 if (e != null) { // existing mapping for key V oldValue = e.value; if (!onlyIfAbsent || oldValue == null)
//用新值替换旧值 e.value = value; afterNodeAccess(e); return oldValue; } } ++modCount; if (++size > threshold) resize(); afterNodeInsertion(evict); return null; }
流程:
1. 根据key计算得到key.hash = (h = k.hashCode()) ^ (h >>> 16);
2. 根据key.hash计算得到桶数组的索引index = key.hash & (table.length - 1),就找到该key的存放位置:
① 如果该位置没有数据,用该数据新生成一个节点保存新数据,返回null;
② 如果该位置有数据是一个红黑树,那么执行相应的插入 / 更新操作;
③ 如果该位置有数据是一个链表,分两种情况一是该链表没有这个节点,另一个是该链表上有这个节点,注意这里判断的依据是key.hash是否一样:
如果该链表没有这个节点,那么采用尾插法新增节点保存新数据,返回null;如果该链表已经有这个节点了,那么找到该节点并更新新数据,返回老数据。
getNode方法
说明:HashMap同样并没有直接提供getNode接口给用户调用,而是提供的get方法,而get方法就是通过getNode来取得元素的。
public V get(Object key) { Node<K,V> e; return (e = getNode(hash(key), key)) == null ? null : e.value; /** * Implements Map.get and related methods *
* @param hash hash for key * @param key the key * @return the node, or null if none */ final Node<K,V> getNode(int hash, Object key) { Node<K,V>[] tab; Node<K,V> first, e; int n; K k; if ((tab = table) != null && (n = tab.length) > 0 && (first = tab[(n - 1) & hash]) != null) { if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k)))) return first; //桶中第一个元素相等,返回first元素 if ((e = first.next) != null) { //存在后继节点 if (first instanceof TreeNode) //在红黑树中寻找 return ((TreeNode<K,V>)first).getTreeNode(hash, key); do {//在链表中寻找 if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) return e; } while ((e = e.next) != null); } } return null; }
resize方法
①.在jdk1.8中,resize方法是在hashmap中的键值对大于阀值时或者初始化时,就调用resize方法进行扩容;
②.每次扩展的时候,都是扩展2倍;
③.扩展后Node对象的位置要么在原位置,要么移动到原偏移量两倍的位置。
final Node<K,V>[] resize() { Node<K,V>[] oldTab = table;//oldTab指向hash桶数组 int oldCap = (oldTab == null) ? 0 : oldTab.length; int oldThr = threshold; int newCap, newThr = 0; if (oldCap > 0) {//如果oldCap不为空的话,就是hash桶数组不为空 if (oldCap >= MAXIMUM_CAPACITY) {//如果大于最大容量了,就赋值为整数最大的阀值 threshold = Integer.MAX_VALUE; return oldTab;//返回 }//如果当前hash桶数组的长度在扩容后仍然小于最大容量 并且oldCap大于默认值16 else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && oldCap >= DEFAULT_INITIAL_CAPACITY) newThr = oldThr << 1; // double threshold 双倍扩容阀值threshold }//如果当前表是空的,但是有阈值。代表是初始化时指定了容量、阈值的情况 else if (oldThr > 0) // initial capacity was placed in threshold newCap = oldThr; else { // zero initial threshold signifies using defaults 如果当前表是空的,而且也没有阈值。代表是初始化时没有任何容量/阈值参数的情况 newCap = DEFAULT_INITIAL_CAPACITY; newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY); } if (newThr == 0) { //如果新的阈值是0,对应的是 当前表是空的,但是有阈值的情况 float ft = (float)newCap * loadFactor; newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ? (int)ft : Integer.MAX_VALUE); } threshold = newThr; @SuppressWarnings({"rawtypes","unchecked"}) Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];//新建hash桶数组 table = newTab; //将新数组的值复制给旧的hash桶数组 if (oldTab != null) { //进行扩容操作,复制Node对象值到新的hash桶数组 for (int j = 0; j < oldCap; ++j) { Node<K,V> e; if ((e = oldTab[j]) != null) {//如果旧的hash桶数组在j结点处不为空,复制给e oldTab[j] = null;//将旧的hash桶数组在j结点处设置为空,方便gc if (e.next == null)//如果e后面没有Node结点 newTab[e.hash & (newCap - 1)] = e;//直接对e的hash值对新的数组长度求模获得存储位置 else if (e instanceof TreeNode)//如果e是红黑树的类型,那么添加到红黑树中 ((TreeNode<K,V>)e).split(this, newTab, j, oldCap); else { // preserve order
//因为扩容是容量翻倍,所以原链表上的每个节点,现在可能存放在原来的下标,即low位, 或者扩容后的下标,即high位。 high位= low位+原哈希桶容量
//低位链表的头结点、尾节点 Node<K,V> loHead = null, loTail = null;
//高位链表的头节点、尾节点 Node<K,V> hiHead = null, hiTail = null; Node<K,V> next; do { next = e.next;//将Node结点的next赋值给next
//这里又是一个利用位运算 代替常规运算的高效点: 利用哈希值 与 旧的容量,可以得到哈希值去模后,是大于等于oldCap还是小于oldCap,等于0代表小于oldCap,应该存放在低位,否则存放在高位 if ((e.hash & oldCap) == 0) {//如果结点e的hash值与原hash桶数组的长度作与运算为0 if (loTail == null)//如果loTail为null loHead = e;//将e结点赋值给loHead else loTail.next = e;//否则将e赋值给loTail.next loTail = e;//然后将e复制给loTail } else {//如果结点e的hash值与原hash桶数组的长度作与运算不为0 if (hiTail == null)//如果hiTail为null hiHead = e;//将e赋值给hiHead else hiTail.next = e;//如果hiTail不为空,将e复制给hiTail.next hiTail = e;//将e复制个hiTail } } while ((e = next) != null);//直到e为空 if (loTail != null) {//如果loTail不为空 loTail.next = null;//将loTail.next设置为空 newTab[j] = loHead;//将loHead赋值给新的hash桶数组[j]处 } if (hiTail != null) {//如果hiTail不为空 hiTail.next = null;//将hiTail.next赋值为空 newTab[j + oldCap] = hiHead;//将hiHead赋值给新的hash桶数组[j+旧hash桶数组长度] } } } } } return newTab; }
remove()
public V remove(Object key) { Node<K,V> e; // 调用removeNode()方法,返回其返回的结果 return (e = removeNode(hash(key), key, null, false, true)) == null ? null : e.value; } final Node<K,V> removeNode(int hash, Object key, Object value, boolean matchValue, boolean movable) { Node<K,V>[] tab; Node<K,V> p; int n, index; // 桶中有元素, p保存了桶中的首个元素 if ((tab = table) != null && (n = tab.length) > 0 && (p = tab[index = (n - 1) & hash]) != null) { Node<K,V> node = null, e; K k; V v; // 找到对应的元素,保存在node中 if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) node = p; else if ((e = p.next) != null) { if (p instanceof TreeNode) node = ((TreeNode<K,V>)p).getTreeNode(hash, key); else { // 遍历链表,找到要删除的元素 do { if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) { node = e; break; } p = e; } while ((e = e.next) != null); } } // 该元素不为空 if (node != null && (!matchValue || (v = node.value) == value || (value != null && value.equals(v)))) { // 如果是树节点,就调用红黑树的删除方法 if (node instanceof TreeNode) ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable); // 如果是第一个元素,桶的索引就保存其下一个元素 else if (node == p) tab[index] = node.next; // 否则就不在指向这个元素 else p.next = node.next; ++modCount; --size; afterNodeRemoval(node); return node; } } return null; }
树化方法
final void treeifyBin(Node<K,V>[] tab, int hash) { int n, index; Node<K,V> e; // 如果当前哈希表中桶的数目,小于最小树化容量,就调用resize()方法进行扩容 if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY) resize(); // 当桶中元素个数大于8,且桶的个数大于64时,进行树化 else if ((e = tab[index = (n - 1) & hash]) != null) { TreeNode<K,V> hd = null, tl = null; do { TreeNode<K,V> p = replacementTreeNode(e, null); if (tl == null) hd = p; else { p.prev = tl; tl.next = p; } tl = p; } while ((e = e.next) != null); if ((tab[index] = hd) != null) hd.treeify(tab); } }
链表变为红黑树的条件:元素个数大于8同时桶的个数大于64
- 当某个桶中的元素个数大于8时,会调用treeifyBin()方法,但并不一定就会变为红黑树
- 当哈希表中桶的个数大于64时,才会真正进行让其转化为红黑树
为什么桶中元素多于了8个,桶的个数小于64,调用resize()方法就可以进行调整?
- 因为调用resize()方法进行扩容时,会让同一个桶中的元素进行桶的重新分配。一部分会被放新哈希表中在原来的位置上,一部分会被放在扩容后的位置上
浙公网安备 33010602011771号