Redlock

  redlock算法大概是这样的:在Redis的分布式环境中,假设有N个Redis master。这些节点完全互相独立,不存在主从复制或者其他集群协调机制。我们确保将在N个实例上使用与在Redis单实例下相同方法获取和释放锁。现在假设有5个Redis master节点,同时我们需要在5台服务器上面运行这些Redis实例,这样保证他们不会同时都宕掉。

  为了取到锁,客户端应该执行以下操作:

  • 获取当前Unix时间,以毫秒为单位。
  • 依次尝试从5个实例,使用相同的key和具有唯一性的value(例如UUID)获取锁。当向Redis请求获取锁时,客户端应该设置一个网络连接和响应超时时间,这个超时时间应该小于锁的失效时间。例如你的锁自动失效时间为10秒,则超时时间应该在5-50毫秒之间。这样可以避免服务器端Redis已经挂掉的情况下,客户端还在死死地等待响应结果。如果服务器端没有在规定时间内响应,客户端应该尽快尝试去另外一个Redis实例请求获取锁。
  • 客户端使用当前时间减去开始获取锁时间(步骤1记录的时间)就得到获取锁使用的时间。当且仅当从大多数(N/2+1,这里是3个节点)的Redis节点都取到锁,并且使用的时间小于锁失效时间时,锁才算获取成功
  • 如果取到了锁,key的真正有效时间等于有效时间减去获取锁所使用的时间(步骤3计算的结果)。
  • 如果因为某些原因,获取锁失败(没有在至少N/2+1个Redis实例取到锁或者取锁时间已经超过了有效时间),客户端应该在所有的Redis实例上进行解锁(即便某些Redis实例根本就没有加锁成功,防止某些节点获取到锁但是客户端没有得到响应而导致接下来的一段时间不能被重新获取锁)。

  源码

       pom依赖

<dependency>
    <groupId>org.redisson</groupId>
    <artifactId>redisson</artifactId>
    <version>3.15.0</version>
</dependency>

       看一下redission封装的redlock算法实现的分布式锁用法

Config config1 = new Config();
config1.useSingleServer().setAddress("redis://192.168.0.1:5378")
        .setPassword("a123456").setDatabase(0);
RedissonClient redissonClient1 = Redisson.create(config1);

Config config2 = new Config();
config2.useSingleServer().setAddress("redis://192.168.0.1:5379")
        .setPassword("a123456").setDatabase(0);
RedissonClient redissonClient2 = Redisson.create(config2);

Config config3 = new Config();
config3.useSingleServer().setAddress("redis://192.168.0.1:5380")
        .setPassword("a123456").setDatabase(0);
RedissonClient redissonClient3 = Redisson.create(config3);

String resourceName = "REDLOCK_KEY";

RLock lock1 = redissonClient1.getLock(resourceName);
RLock lock2 = redissonClient2.getLock(resourceName);
RLock lock3 = redissonClient3.getLock(resourceName);
// 向3个redis实例尝试加锁
RedissonRedLock redLock = new RedissonRedLock(lock1, lock2, lock3);
boolean isLock;
try {
    // isLock = redLock.tryLock();
    // 500ms拿不到锁, 就认为获取锁失败。10000ms即10s是锁失效时间。
    isLock = redLock.tryLock(500, 10000, TimeUnit.MILLISECONDS);
    System.out.println("isLock = "+isLock);
    if (isLock) {
        //TODO if get lock success, do something;
    }
} catch (Exception e) {
} finally {
    // 无论如何, 最后都要解锁
    redLock.unlock();
}

  实现分布式锁的一个非常重要的点就是set的value要具有唯一性,redisson的value是怎样保证value的唯一性呢?答案是UUID+threadId。入口在redissonClient.getLock("REDLOCK_KEY"),

 protected String getLockName(long threadId) {
        return id + ":" + threadId;
    }

  获取锁的代码为redLock.tryLock()或者redLock.tryLock(500, 10000, TimeUnit.MILLISECONDS),两者的最终核心源码都是下面这段代码,只不过前者获取锁的默认租约时间(leaseTime)是LOCK_EXPIRATION_INTERVAL_SECONDS,即30s:

    <T> RFuture<T> tryLockInnerAsync(long waitTime, long leaseTime, TimeUnit unit, long threadId, RedisStrictCommand<T> command) {
        internalLockLeaseTime = unit.toMillis(leaseTime);

        return evalWriteAsync(getName(), LongCodec.INSTANCE, command,
                "if (redis.call('exists', KEYS[1]) == 0) then " +
                        "redis.call('hincrby', KEYS[1], ARGV[2], 1); " +
                        "redis.call('pexpire', KEYS[1], ARGV[1]); " +
                        "return nil; " +
                        "end; " +
                        "if (redis.call('hexists', KEYS[1], ARGV[2]) == 1) then " +
                        "redis.call('hincrby', KEYS[1], ARGV[2], 1); " +
                        "redis.call('pexpire', KEYS[1], ARGV[1]); " +
                        "return nil; " +
                        "end; " +
                        "return redis.call('pttl', KEYS[1]);",
                Collections.singletonList(getName()), internalLockLeaseTime, getLockName(threadId));
    }

  获取锁的命令中,

  • KEYS[1]就是Collections.singletonList(getName()),表示分布式锁的key,即REDLOCK_KEY;
  • ARGV[1]就是internalLockLeaseTime,即锁的租约时间,默认30s;
  • ARGV[2]就是getLockName(threadId),是获取锁时set的唯一值,即UUID+threadId:
  释放锁的代码为redLock.unlock(),核心源码如下:
protected RFuture<Boolean> unlockInnerAsync(long threadId) {
    // 释放锁时需要在redis实例上执行的lua命令
    return commandExecutor.evalWriteAsync(getName(), LongCodec.INSTANCE, RedisCommands.EVAL_BOOLEAN,
            // 如果分布式锁KEY不存在,那么向channel发布一条消息
            "if (redis.call('exists', KEYS[1]) == 0) then " +
                "redis.call('publish', KEYS[2], ARGV[1]); " +
                "return 1; " +
            "end;" +
            // 如果分布式锁存在,但是value不匹配,表示锁已经被占用,那么直接返回
            "if (redis.call('hexists', KEYS[1], ARGV[3]) == 0) then " +
                "return nil;" +
            "end; " +
            // 如果就是当前线程占有分布式锁,那么将重入次数减1
            "local counter = redis.call('hincrby', KEYS[1], ARGV[3], -1); " +
            // 重入次数减1后的值如果大于0,表示分布式锁有重入过,那么只设置失效时间,还不能删除
            "if (counter > 0) then " +
                "redis.call('pexpire', KEYS[1], ARGV[2]); " +
                "return 0; " +
            "else " +
                // 重入次数减1后的值如果为0,表示分布式锁只获取过1次,那么删除这个KEY,并发布解锁消息
                "redis.call('del', KEYS[1]); " +
                "redis.call('publish', KEYS[2], ARGV[1]); " +
                "return 1; "+
            "end; " +
            "return nil;",
            // 这5个参数分别对应KEYS[1],KEYS[2],ARGV[1],ARGV[2]和ARGV[3]
            Arrays.<Object>asList(getName(), getChannelName()), LockPubSub.unlockMessage, internalLockLeaseTime, getLockName(threadId));

}
      核心逻辑代码
public boolean tryLock(long waitTime, long leaseTime, TimeUnit unit) throws InterruptedException {
    // 实现要点之允许加锁失败节点限制
    int failedLocksLimit = failedLocksLimit();
    List<RLock> acquiredLocks = new ArrayList<RLock>(locks.size());
    // 实现要点之遍历所有节点通过EVAL命令执行lua加锁
    for (ListIterator<RLock> iterator = locks.listIterator(); iterator.hasNext();) {
        RLock lock = iterator.next();
        boolean lockAcquired;
        try {
            // 对节点尝试加锁
            lockAcquired = lock.tryLock(awaitTime, newLeaseTime, TimeUnit.MILLISECONDS);
        } catch (RedisConnectionClosedException|RedisResponseTimeoutException e) {
            // 如果抛出这类异常,为了防止加锁成功,但是响应失败,需要解锁
            unlockInner(Arrays.asList(lock));
            lockAcquired = false;
        } catch (Exception e) {
            // 抛出异常表示获取锁失败
            lockAcquired = false;
        }
        
        if (lockAcquired) {
            // 成功获取锁集合
            acquiredLocks.add(lock);
        } else {
            // 如果达到了允许加锁失败节点限制,那么break,即此次Redlock加锁失败
            if (locks.size() - acquiredLocks.size() == failedLocksLimit()) {
                break;
            }               
        }
    }
    return true;
}

        Redisson这个开源框架对Redis分布式锁的实现原理:

        

   几乎所有的Redisson对象都实现了一个异步接口,异步接口提供的方法名称与其同步接口的方法名称相互匹配。例如:

// RAtomicLong接口继承了RAtomicLongAsync接口
RAtomicLongAsync longObject = client.getAtomicLong("myLong");
RFuture<Boolean> future = longObject.compareAndSetAsync(1, 401);

  异步执行的方法都会返回一个实现了RFuture接口的对象。通过向这个对象添加监听器可以实现非阻塞的执行方式。

// JDK 1.8+ 适用
future.whenComplete((res, exception) -> {
    // ...
});
// 或者
future.thenAccept(res -> {
    // 处理返回
}).exceptionally(exception -> {
    // 处理错误
});

  

参考:
 https://www.jianshu.com/p/f302aa345ca8
 https://blog.wangqi.love/articles/redis/Redisson%E5%88%86%E5%B8%83%E5%BC%8F%E9%94%81%E7%9A%84%E5%AE%9E%E7%8E%B0.html
 
posted on 2021-03-28 17:38  溪水静幽  阅读(665)  评论(0)    收藏  举报