索引优化之一
1、索引列上不能使用表达式或者函数
select .... from t_order
where to_days(out_date) - to_days(current_date) < = 30
在out_date建立了 B树索引,因为使用了函数to_days,无法走索引,改造
select .... from t_order
where out_date <= data_add(current_date , interval 30 day) ;
2、前缀索引和索引列的选择性
当索引是很长的字符序列(比如BLOB,TEXT,或者很长的VARCHAR)时,这个索引将会很占内存,而且会很慢,这时候就会用到前缀索引了。所谓的前缀索引就是去索引的前面几个字母作为索引,但是要降低索引的重复率,索引我们还必须要判断前缀索引的重复率
创建前缀索引
create index index_name on table(col_name(n));
建立索引的区别 col_name(n),其中n的长度,由存储引擎决定,innodb 最大767个字节,myIsam 最大1000个字节
优点:前缀索引是一种能使索引更小,更快的有效办法 。缺点:mysql无法使用其前缀索引做ORDER BY和GROUP BY,也无法使用前缀索引做覆盖扫描
3、联合索引
选择联合索引的顺序:
1、经常会被使用到的列优先,放到联合索引的最左边 2、宽度小的列优先
4、覆盖索引
覆盖索引: 如果一个索引包含(或覆盖)所有需要查询的字段的值 ,简言之----->只需扫描索列而无须回表查非索引列的字段。
优点:1、可优化缓存,减少磁盘I/O操作 2、可以减少随机I/O, 变随机I/O为顺序I/O操作 3、可以避免对Innodb主键索引的二次查询
无法使用覆盖索引: 1、如果查询中使用了太多的列,尤其是那种查询全部字段的,或者 select * 的 2、使用了双% 号的like查询
5、like语句操作
一般情况下不鼓励使用like操作,如果非使用不可,如何使用也是一个问题。like “%aaa%” 不会使用索引而like “aaa%”可以使用索引。
5、explain的参数的说明
id: 1 select_type: SIMPLE table: actor partitions: NULL type: ref possible_keys: idx_actor_last_name key: idx_actor_last_name key_len: 182 ref: const rows: 1 filtered: 100.00 Extra: Using index
id
select_type
simple:简单的select 查询,查询中不包含子查询或者union
primary:查询中若包含任何复杂的子查询,最外层查询则被标记为primary
subquery:在select或where 列表中包含了子查询
derived:在from列表中包含的子查询被标记为derived(衍生)MySQL会递归执行这些子查询,把结果放在临时表里。
union:若第二个select出现在union之后,则被标记为union,若union包含在from子句的子查询中,外层select将被标记为:derived
union result:从union表获取结果的select
partitions
表所使用的分区,如果要统计十年公司订单的金额,可以把数据分为十个区,每一年代表一个区。这样可以大大的提高查询效率。
type
这是一个非常重要的参数,连接类型,常见的有:all , index , range , ref , eq_ref , const , system , null 八个级别。
性能从最优到最差的排序:system > const > eq_ref > ref > range > index > all
对java程序员来说,若保证查询至少达到range级别或者最好能达到ref则算是一个优秀而又负责的程序员。
all:(full table scan)全表扫描无疑是最差,若是百万千万级数据量,全表扫描会非常慢。
index:(full index scan)全索引文件扫描比all好很多,毕竟从索引树中找数据,比从全表中找数据要快。
range:只检索给定范围的行,使用索引来匹配行。范围缩小,当然比全表扫描和全索引文件扫描要快。sql语句中一般会有between,in,>,< 等查询。
ref:非唯一性索引扫描,本质上也是一种索引访问,返回所有匹配某个单独值的行。比如查询公司所有属于研发团队的同事,匹配的结果是多个并非唯一值。
eq_ref:唯一性索引扫描,对于每个索引键,表中有一条记录与之匹配。比如查询公司的CEO,匹配的结果只可能是一条记录,
const:表示通过索引一次就可以找到,const用于比较primary key 或者unique索引。因为只匹配一行数据,所以很快,若将主键至于where列表中,MySQL就能将该查询转换为一个常量。
system:表只有一条记录(等于系统表),这是const类型的特列,平时不会出现,了解即可
possible_keys
显示查询语句可能用到的索引(一个或多个或为null),不一定被查询实际使用。
key
显示查询语句实际使用的索引。若为null,则表示没有使用索引。
key_len
显示索引中使用的字节数,可通过key_len计算查询中使用的索引长度。在不损失精确性的情况下索引长度越短越好。key_len 显示的值为索引字段的最可能长度,并非实际使用长度,即key_len是根据表定义计算而得,并不是通过表内检索出的。
ref
显示索引的哪一列或常量被用于查找索引列上的值。
rows
根据表统计信息及索引选用情况,大致估算出找到所需的记录所需要读取的行数,值越大越不好。
extra
Using filesort: 说明MySQL会对数据使用一个外部的索引排序,而不是按照表内的索引顺序进行读取。MySQL中无法利用索引完成的排序操作称为“文件排序” 。出现这个就要立刻优化sql。
Using temporary: 使用了临时表保存中间结果,MySQL在对查询结果排序时使用临时表。常见于排序 order by 和 分组查询 group by。 出现这个更要立刻优化sql。
Using index: 表示相应的select 操作中使用了覆盖索引(Covering index),避免访问表的数据行,效果不错!如果同时出现Using where,表明索引被用来执行索引键值的查找。如果没有同时出现Using where,表示索引用来读取数据而非执行查找动作。
覆盖索引(Covering Index) :也叫索引覆盖,就是select 的数据列只用从索引中就能够取得,不必读取数据行,MySQL可以利用索引返回select 列表中的字段,而不必根据索引再次读取数据文件。
Using index condition: 在5.6版本后加入的新特性,优化器会在索引存在的情况下,通过符合RANGE范围的条数 和 总数的比例来选择是使用索引还是进行全表遍历。
Using where: 表明使用了where 过滤
Using join buffer: 表明使用了连接缓存
impossible where: where 语句的值总是false,不可用,不能用来获取任何元素
distinct: 优化distinct操作,在找到第一匹配的元组后即停止找同样值的动作。
filtered
一个百分比的值,和rows 列的值一起使用,可以估计出查询执行计划(QEP)中的前一个表的结果集,从而确定join操作的循环次数。小表驱动大表,减轻连接的次数。
通过explain的参数介绍,可以得知:
1 表的读取顺序(id)
2 数据读取操作的操作类型(type)
3 哪些索引被实际使用(key)
4 表之间的引用(ref)
5 每张表有多少行被优化器查询(rows)
浙公网安备 33010602011771号