摘要:
模型的优化目标如下: 其中,$<x_n,y_n>$是一条训练样本,$y_n$是训练目标,$x_n$是normalized bag of features。矩阵参数A是基于word的look-up table,也就是A是词的embedding向量。$Ax_n$矩阵运算的数学意义是将word的embed 阅读全文
摘要:
Optimization in speed and memory usage Many boosting tools use pre-sorted based algorithms[1][2](e.g. default algorithm in xgboost) for decision tree 阅读全文