Counting Offspring
Time Limit: 15000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Problem Description
You are given a tree, it’s root is p, and the node is numbered from 1 to n. Now define f(i) as the number of nodes whose number is less than i in all the succeeding nodes of node i. Now we need to calculate f(i) for any possible i.
Input
Multiple cases (no more than 10), for each case:
The first line contains two integers n (0<n<=10^5) and p, representing this tree has n nodes, its root is p.
Following n-1 lines, each line has two integers, representing an edge in this tree.
The input terminates with two zeros.
The first line contains two integers n (0<n<=10^5) and p, representing this tree has n nodes, its root is p.
Following n-1 lines, each line has two integers, representing an edge in this tree.
The input terminates with two zeros.
Output
For each test case, output n integer in one line representing f(1), f(2) … f(n), separated by a space.
Sample Input
15 7
7 10
7 1
7 9
7 3
7 4
10 14
14 2
14 13
9 11
9 6
6 5
6 8
3 15
3 12
0 0
Sample Output
0 0 0 0 0 1 6 0 3 1 0 0 0 2 0
Author
bnugong
Source
树状数组,父亲节点i 时,统计比 i 小的个数 ,递归回退到 i 时,再次统计比 i 小的个数。
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <string>
#include <map>
#include <vector>
#include <set>
#include <algorithm>
#include <vector>
#include <stack>
#include <math.h>
#include <stdlib.h>
#include <fstream>
#include <queue>
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
#pragma comment(linker, "/STACK:16777216")
using namespace std;
typedef long long LL ;
const int size=1000008 ;
struct Edge{
int v ;
int next ;
};
Edge edge[size*2] ;
int id ;
int C[size] ;
int vec[size] ;
int ans[size] ;
bool visited[size] ;
struct Me{
int N ;
int root ;
Me(){} ;
Me(int n,int r):N(n),root(r){
fill(C,C+1+N,0) ;
id=0 ;
fill(vec,vec+1+N,-1) ;
fill(visited,visited+1+N,0) ;
fill(ans,ans+1+N,0) ;
};
inline void add_edge(int u ,int v){
edge[id].v=v ;
edge[id].next=vec[u] ;
vec[u]=id++ ;
}
inline int lowbit(int x){
return x&(-x) ;
}
void insert(int id ,int x){
while(id<=N){
C[id]+=x ;
id+=lowbit(id) ;
}
}
int get_sum(int id){
int sum=0 ;
while(id>=1){
sum+=C[id] ;
id-=lowbit(id) ;
}
return sum ;
}
void dfs(int now){
visited[now]=1 ;
int less_sum=get_sum(now-1) ;
insert(now,1) ;
for(int e=vec[now];e!=-1;e=edge[e].next){
int son=edge[e].v ;
if(visited[son])
continue ;
dfs(son) ;
}
ans[now]=get_sum(now-1)-less_sum ;
}
void gao(){
int u ,v ;
for(int i=1;i<N;i++){
scanf("%d%d",&u,&v) ;
add_edge(u,v) ;
add_edge(v,u) ;
}
dfs(root) ;
printf("%d",ans[1]) ;
for(int i=2;i<=N;i++)
printf(" %d",ans[i]) ;
puts("") ;
}
};
int main(){
int n , p ;
while(scanf("%d%d",&n,&p)){
if(n==0&&p==0)
break ;
Me me(n,p) ;
me.gao() ;
}
return 0;
}
浙公网安备 33010602011771号