Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).
Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
Sample Input
2
5 6 -1 5 4 -7
7 0 6 -1 1 -6 7 -5
Sample Output
Case 1:
14 1 4
Case 2:
7 1 6
#include<iostream>
#include<cstdio>
using namespace std;
int main()
{
int n,t,i,c;
int a[100002];
scanf("%d",&t); //数据的组数
for(c=1;c<=t;c++) //用c来记录数据的组数和循环次数,还有控制换行的输出
{
int k=1,st=0,en=0,summax=-1000,sum=0;
scanf("%d",&n);
for(i=0;i<n;i++) //输入数据
{
scanf("%d",&a[i]);
}
for(i=0;i<n;i++) //此循环控制连续元素相加,sum与summax的比较,sum<0的情况
{
sum+=a[i]; //连续元素一个个加起来
if(sum>summax) //如果sum>summax,把sum赋值给summax(把最大的连续元素之和用summax来存)
{
summax=sum;
st=k; //记录头位置
en=i+1; //记录尾位置
}
if(sum<0) //若sum<0,则sum=0,且sum<0的这一连续元素不要了,从下一个元素开始
{
sum=0;
k=i+2; //从下一个元素开始,k是记录头位置,k=i+2即从尾位置的下一个元素开始算
}
}
printf("Case %d:\n%d %d %d\n",c,summax,st,en);
if(c!=t) //换行的控制
cout<<endl;
}
return 0;
}