同余式的基本性质

  1. \(a\equiv a(\bmod m)\)
  2. \(a\equiv b(\bmod m)\to b\equiv a(\bmod m)\)
  3. \(a\equiv b(\bmod m) \wedge b\equiv c(\bmod m)\to a\equiv c(\bmod m)\)
  4. \(ac\equiv bc(\bmod p ) \to a \equiv b(\bmod \frac{p}{gcd(c,p)})\)
  5. \(a\equiv b(\bmod cd) \to a\equiv b(\bmod d)\)
  6. \(a\equiv b(\bmod d)\wedge a\equiv b(\bmod c) \to a\equiv b(\bmod lcm(c,d))\)
  7. \(a\equiv b(\bmod p)\to \forall c\in\mathbb{Z}\mid (a+c)\equiv (b+c)(\bmod p)\)
  8. \(a\equiv b(\bmod p)\to \forall c\in\mathbb{Z}\mid (a\times c)\equiv (b\times c)(\bmod p)\)
  9. \(a\equiv b(\bmod p)\to \forall c\in\mathbb{Z}\mid (a^c)\equiv (b^c)(\bmod p)\)
posted @ 2023-08-23 19:10  明天动手  阅读(327)  评论(0)    收藏  举报