洛谷 P6218 [USACO06NOV] Round Numbers S
洛谷 P6218 [USACO06NOV] Round Numbers S
题目描述
如果一个正整数的二进制表示中,\(0\) 的数目不小于 \(1\) 的数目,那么它就被称为「圆数」。
例如,\(9\) 的二进制表示为 \(10011001\),其中有 \(2\) 个 \(0\) 与 \(2\) 个 \(1\)。因此,\(9\) 是一个「圆数」。
请你计算,区间 \([l,r]\) 中有多少个「圆数」。
输入格式
一行,两个整数 \(l,r\)。
输出格式
一行,一个整数,表示区间 \([l,r]\)中「圆数」的个数。
输入输出样例
输入 #1
2 12
输出 #1
6
说明/提示
【数据范围】
对于 \(100\%\) 的数据,\(1\le l,r\le 2\times 10^9\)。
【样例说明】
区间 \([2,12]\) 中共有 \(6\) 个「圆数」,分别为 \(2,4,8,9,10,12\)
分析
比较套路的数位 \(DP\)
数位 \(DP\) 的实质就是换一种暴力枚举的方式,使得新的枚举方式满足 \(DP\) 的性质,然后记忆化就可以了。
首先,我们要进行 \(DP\) 的话,肯定要定义一个 \(f\) 数组存储我们计算过的值
因为这道题和数位有关,所以第一位我们要定义当前遍历到了第几位
而且我们还要判断二进制下 \(0\) 的数量和 \(1\) 的数量
所以,我们设 \(f[i][j][k]\) 为当前遍历到第 \(i\) 位,二进制下 \(1\) 的数量为 \(j\),\(0\) 的数量为 \(j\) 的数的个数
主函数我们用差分的思想搞一下即可
signed main(){
memset(f,-1,sizeof(f));
int l,r;
scanf("%lld%lld",&l,&r);
printf("%lld\n",solve(r)-solve(l-1));
return 0;
}
然后是 \(solve\) 函数
这里的 \(cnt\) 是用来记录当前的数在二进制下有多少位,\(num\) 数组是用来记录这个数每一二进制位上的数字的
这个函数的变量只有一个 \(xx\), 返回值是 \(0\) 到 \(xx\) 之间圆数的个数
int solve(int xx){
memset(num,0,sizeof(num));
cnt=0;
while(xx){
num[++cnt]=xx&1ll;
xx>>=1ll;
}
return dfs(cnt,0,0,1,1);
}
下面的 \(dfs\) 函数是最重要的部分
int dfs(int ws,int tot1,int tot0,bool lim,bool zer){
if(ws==0) {
if(tot1<=tot0) return 1;
return 0;
}
if(lim==0 && zer==0 && f[ws][tot1][tot0]!=-1) return f[ws][tot1][tot0];
int up=1,ans=0;
if(lim) up=num[ws];
for(int i=0;i<=up;i++){
if(zer==1 && i==0) ans+=dfs(ws-1,0,0,lim && i==up,1);
else ans+=dfs(ws-1,tot1+(i==1),tot0+(i==0),lim && i==up,0);
}
if(lim==0 && zer==0)f[ws][tot1][tot0]=ans;
return ans;
}
它的五个参数分别为:当前处理到第 \(ws\) 位
\(0\) 的个数 \(tot0\) ,\(1\) 的个数 \(tot1\)
\(lim\) 特判前一位是否为范围内的最大值
\(zer\) 记录有没有前导零
终止条件就是处理到最后一位
具体的边界看一下下面的模板
代码
#include<bits/stdc++.h>
using namespace std;
#define int long long
int f[60][60][60],num[55],cnt,sum[55];
const int mod=1e7+7;
int dfs(int ws,int tot1,int tot0,bool lim,bool zer){
if(ws==0) {
if(tot1<=tot0) return 1;
return 0;
}
if(lim==0 && zer==0 && f[ws][tot1][tot0]!=-1) return f[ws][tot1][tot0];
int up=1,ans=0;
if(lim) up=num[ws];
for(int i=0;i<=up;i++){
if(zer==1 && i==0) ans+=dfs(ws-1,0,0,lim && i==up,1);
else ans+=dfs(ws-1,tot1+(i==1),tot0+(i==0),lim && i==up,0);
}
if(lim==0 && zer==0)f[ws][tot1][tot0]=ans;
return ans;
}
int solve(int xx){
memset(num,0,sizeof(num));
cnt=0;
while(xx){
num[++cnt]=xx&1ll;
xx>>=1ll;
}
return dfs(cnt,0,0,1,1);
}
signed main(){
memset(f,-1,sizeof(f));
int l,r;
scanf("%lld%lld",&l,&r);
printf("%lld\n",solve(r)-solve(l-1));
return 0;
}

浙公网安备 33010602011771号