【POJ2480】Longge's problem

题目链接

Longge's problem

题目描述

Longge is good at mathematics and he likes to think about hard mathematical problems which will be solved by some graceful algorithms. Now a problem comes: Given an integer \(N\)(\(1 < N < 2^{31}\)),you are to calculate \(\sum gcd\)(\(i, N\)) \(1 \le i \le N\).

"Oh, I know, I know!" Longge shouts! But do you know? Please solve it.

输入格式

Input contain several test case.
A number \(N\) per line.

输出格式

For each \(N\), output ,\(\sum gcd\)(\(i,N\)) \(1 \le i \le N\), a line

样例输入

2
6

样例输出

3
15

题解

题目要求\(\sum_{i=1}^ngcd\)(\(i,n\))
那么我们考虑一个数\(i\)对答案的贡献,也就是\(gcd\)(\(k,n\))\(==i\)的个数乘上\(i\)
首先,如果\(i\)不是\(n\)的因数,那么不可能有\(gcd\)(\(k,n\))\(==i\),所以\(i\)对答案的贡献为\(0\)
那么如果\(i\)\(n\)的因子,那么如果存在\(gcd\)(\(k,n\))\(==i\),那么\(k\)一定满足\(k/i\)\(n/i\)互质,也就是说\(k\)\(n\)的因子中除去\(i\)后没有相同的因子了。
那么我们马上就发现了\(i\)对答案的贡献就是\(i*\phi\)(\(n/i\))。
那么显然题目就变成了求\(\sum_{i|n}i*\phi\)(\(n/i\))

在判断质数的时候我们都学过一个数的因子都是“对称”的,所以在枚举\(\phi\)(\(n/i\))的过程中我们只要枚举到\(\sqrt{n}\),就行了。

接下来的目标就是如何快速求\(\phi\)(\(i\))了,
我们先了解欧拉函数的一些性质:
有一个质数\(p\),则
\(\phi\)(\(p^k\))\(=p^k-p^{k-1}=p^{k-1}*(p-1)\)
因为\(p^k\)以内不和\(p^k\)互质的数只有\(p\)的倍数,也就是数量为\(\frac{p^k}{p}\)
因为\(\phi\)是积性函数,所以令\(p,k\)互质,则
\(\phi\)(\(p*k\))\(=\phi\)(\(p\))\(*\phi\)(\(k\))
所以我们就能用下面的代码求\(\phi\)

inline long long phi(long long x){
    long long sum=x;
    for(long long j=2;j*j<=x;j++)
        if(x%j==0){
            while(x%j==0) x/=j;
            sum=sum/j*(j-1);
        }
    if(x!=1) sum=sum/x*(x-1);
    return sum;
}

ps:有多组数据
上代码:

#include<cstdio>
using namespace std;
long long n;
inline long long fd(long long x){
    long long sum=x;
    for(long long j=2;j*j<=x;j++){
        if(x%j==0){
            while(x%j==0) x/=j;
            sum=sum/j*(j-1);
        }
    }
    if(x!=1) sum=sum/x*(x-1);
    return sum;
}
long long sum;
int main(){
    while(scanf("%lld",&n)!=EOF){
        sum=0;
        for(long long i=1;i*i<=n;i++){
            if(n%i==0) sum+=fd(n/i)*i;
            long long u=n/i;
            if(u!=i && n%u==0) sum+=fd(n/u)*u;
        }
        printf("%lld\n",sum);
    }
    return 0;
}
posted @ 2020-08-11 18:24  oblivionl  阅读(136)  评论(0编辑  收藏  举报