09 2025 档案
摘要:综合考虑现有多分类不平衡学习方法的局限性和相关研究工作的不足,本文提出了一种基于多类降解和特征构造的新型多分类不平衡学习深度森林算法,简称为MDGP-Forest。MDGP-Forest首先将数据拆解为多个二分类数据副本,以规避多个类别之间的复杂相互关系。接着通过增强向量得到每个实例的硬度,并以此为依据对副本进行欠采样。该步骤的目的是防止噪声实例引入负面的信息,同时提高对靠近决策边界的实例的关注。然后MDGP-Forest通过多个种群GP进行类别相关的特征构造,每个GP种群构造出的特征将帮助一个类别的实例更容易和其他类别区分开来。MDGP-Forest使用构造特征训练一个新的级联层,重复上述过程训练多层级联森林,直到满足停止条件。实验在35个数据集上对MDGP-Forest的性能进行充分的评估,实验结果表明MDGP-Forest在多分类不平衡问题上显著优于现有的方法,具有较高的预测性能。
阅读全文