摘要:
针对 gcForestcs 受高置信度但精度较低的实例影响的问题,本文提出了一种深度分箱置信度筛选森林算法。该算法采用基于置信度对实例进行分箱,这种方式可以检测到分区错误的实例,将更精确的实例传递到后续层次。实验结果表明,对于相同的训练超参数,DBC-Forest 模型比 gcForest 和 gcforests 具有更好的精度,且训练速度更快。 阅读全文
posted @ 2023-10-08 01:28
乌漆WhiteMoon
阅读(128)
评论(0)
推荐(0)

浙公网安备 33010602011771号