摘要:
针对存在大量相关特征时重要特征的影响被削弱的问题,本文设计了一种通过稀疏森林来消除相关偏差的特征选择算法 ControlBurn。首先使用套袋和提升等方法生成森林,然后通过一个平衡特征稀疏性和预测性能的组 LASSO 惩罚目标为每棵树选择稀疏权值,从而减少树的数量。与 Wrapper 特征选择方法不同,ControlBurn 只需要一次训练迭代即可运行。通过实验说明,当应用于具有相关特征的数据集时,ControlBurn 优于传统的特征选择算法。 阅读全文
posted @ 2023-08-20 04:24
乌漆WhiteMoon
阅读(107)
评论(0)
推荐(0)

浙公网安备 33010602011771号