《组合数学》学习笔记 之 特殊计数序列

8.1 \(Catalan\)

先见识一下 \(Catalan\) 数长啥样——

\(C_0=1,C_1=1,C_2=2,C_3=5,C_4=14,C_5=42,C_6=132...\)

一些公式及推导

  1. \(C_0=1, C_n=\sum\limits_{i=0}^{n-1} C_i \times C_{n-i-1}\) \((n\geq 1)\)

许多应用中都用到该式子。

2) \(C_n=\frac{1}{n+1}\binom{2n}{n}\)

由1)推导一下。

\({C_n}\) 的生成函数为 \(F(x)=C_0+C_1x+C_2x^2+...+C_kx^k+...\)

则 $$
\begin{equation}
\begin{aligned}
(F(x))2&=C_02+(C_0C_1+C_1C_0)x+(C_0C_2+C_1C_1+C_2C_0)x2+...+(\sum\limits_{i=0} C_i \times C_{k-i})x^k+... \
&=C_1+C_2x+C_3x2+...+C_{k+1}xk+... \
&=\frac{F(x)-C_0}{x}=\frac{F(x)-1}{x}
\end{aligned}
\end{equation
}

\[ 即 $(F(x))^2-\frac{1}{x}F(x)+\frac{1}{x}=0$ 解得 $F(x)=\frac{1-\sqrt{1-4x}}{2x}$ (取正负看收敛性) 由牛顿二项式定理可知 $(1+z)^{\frac{1}{2}}=1+\sum\limits_{i=1}^{\infty} \frac{(-1)^{i-1}}{i\times 2^{2i-1}}\binom{2i-2}{i-1}z^i$ $(|z|<1)$ (该式推导可在[这里](https://www.cnblogs.com/lindalee/p/12235434.html)找) 则 \]

\begin{equation}
\begin{aligned}
F(x)&=-\frac{1}{2x}\sum\limits_{i=1}^{\infty} \frac{(-1)^{i-1}}{i\times 2{2i-1}}\binom{2i-2}{i-1}(-1)i4ixi \
&=\sum\limits_{i=1}^{\infty} \frac{1}{i}\binom{2i-2}{i-1}x^{i-1}
\end{aligned}
\end{equation
}

\[ 即 $C_{n-1}=\frac{1}{n}\binom{2n-2}{n-1}$ $(n\geq 1)$ 则 $C_n=\frac{1}{n+1}\binom{2n}{n}$ $(n\geq 0)$ 3)<font color=9900CC size=4> $C_0=1, C_n=\frac{4n-2}{n+1}C_{n-1}$ $(n\geq 1)$ </font> 直接带2)进去:$\frac{C_n}{C_{n-1}}=\frac{n\binom{2n}{n}}{(n+1)\binom{2n-2}{n-1}}=\frac{n(2n)!(n-1)!(n-1)!}{(n+1)(2n-2)!n!n!}=\frac{4n-2}{n+1}$ ###定理 **考虑由 $n$ 个1和 $n$ 个-1构成的 $2n$ 项序列 $a_1,a_2,...,a_{2n}$ 其部分和总满足 $a_1+a_2+...+a_k\geq 0$ $(k=1,2,...,2n)$ 的序列个数等于第 $n$ 个 $Catalan$ 数 $C_n=\frac{1}{n+1}\binom{2n}{n}$ ** **证明一:** 序列总个数为 $\binom{2n}{n}$ ,设其中不满足要求的由 $U_n$ 个,满足的由 $A_n$ 个。 则 $A_n=\binom{2n}{n}-U_n$ ,考虑如何求 $U_n$ 设 $k$ 为不满足要求的序列中第一个 $a_1+a_2+...+a_k<0$ 的下标,则 $a_1+a_2+...+a_{k-1}=0$,$a_k=-1$ 前 $k$ 项中有 $\frac{k-1}{2}$ 个1,$\frac{k+1}{2}$ 个-1 将前 $k$ 项各自取相反数,则新数列中有 $(n+1)$ 个1和 $(n-1)$ 个-1 设 $h$ 为新数列中首个 $a_1+a_2+...+a_h>0$ 的下标(由于新数列中1比-1个数多,$h$ 一定存在),则 $h=k$ 将前 $h$ 项再各自取相反数便得到原序列。 则 $(n+1)$ 个1和 $(n-1)$ 个-1的排列与 $U_n$ 中的排列一一对应。 所以 $U_n=\binom{2n}{n-1}$ $A_n=\binom{2n}{n}-\binom{2n}{n-1}=\frac{(2n)!}{n!(n-1)!}(\frac{1}{n}-\frac{1}{n+1})=\frac{1}{n+1}\binom{2n}{n}$ **证明二:** 设 $k$ 为满足要求的序列中的首个 $a_1+a_2+...+a_{2k}=0$ ,则 $k\in [1,n],k\in Z$ 设 $A_n$ 为满足要求的序列个数。 则 $A_n=\sum\limits_{i=1}^n A_{n-i}A_{i-1}=\sum\limits_{i=0}^{n-1} A_iA_{n-i+1}$ 所以 ${A_n}$ 即为卡特兰数列。 ###应用 我懒得写了。推荐下别人的[戳这里](https://blog.csdn.net/zhangmh93425/article/details/44677891) ##8.2 差分序列与 $strling$ 数 ##8.3 分拆数 ##8.4 一个几何问题 ##8.5 格路径数和 $Schr\ddot{o}der$ 数\]

posted @ 2020-02-21 15:55  秋千旁的蜂蝶~  阅读(385)  评论(0编辑  收藏  举报