POJ2299 Ultra-QuickSort(树状数组+离散化)
POJ2299 Ultra-QuickSort
Description
In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a sequence of n distinct integers by swapping two adjacent sequence elements until the sequence is sorted in ascending order. For the input sequence
9 1 0 5 4 ,
Ultra-QuickSort produces the output
0 1 4 5 9 .
Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.
Input
The input contains several test cases. Every test case begins with a line that contains a single integer n < 500,000 -- the length of the input sequence. Each of the the following n lines contains a single integer 0 ≤ a[i] ≤ 999,999,999, the i-th input sequence element. Input is terminated by a sequence of length n = 0. This sequence must not be processed.
Output
For every input sequence, your program prints a single line containing an integer number op, the minimum number of swap operations necessary to sort the given input sequence.
Sample Input
5
9
1
0
5
4
3
1
2
3
0
Sample Output
6
0
题解
题意
对于给定序列,问至少需要交换多少次才能够转变为非递减序列。
思路
实际上,了解逆序数后应该可以明白这样一个问题,逆序数实际上衡量的是这样一个问题,当进行有效交换之后,相当于逆序数减少了1。因此,统计序列的逆序数可以得到最终结果。
统计逆序数时,可以采用归并排序过程中进行统计。当进行归并排序时,由于分成两组,分别向最终序列内进行添加。所以在此过程中可以统计逆序数。
另外,通过树状数组的方式也能够统计逆序数。当然,题目内有这样的情况,由于取值范围非常大。所以需要进行离散化的操作。然后按照逆序数的定义,统计逆序数。
代码
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<string>
#include<vector>
#include<stack>
#include<bitset>
#include<cstdlib>
#include<cmath>
#include<set>
#include<list>
#include<deque>
#include<map>
#include<queue>
using namespace std;
typedef long long ll;
const double PI = acos(-1.0);
const double eps = 1e-6;
const int INF = 0x3f3f3f3f;
#define REP(i,n) for(int i=0;i<(n);i++)
const int MAXN = 5e5+10;
ll ind[MAXN];
ll C[MAXN];
struct Node{
ll v;
ll p;
}a[MAXN];
ll N;
ll lowbit(ll x){
return x&(-x);
}
ll getsum(ll i){
ll ans = 0;
for(;i;i-=lowbit(i)){
ans += C[i];
}
return ans;
}
ll add(ll i,ll val){
for(ll x=i;x<=N;x+=lowbit(x)){
C[x]+=val;
}
return 0;
}
ll cmp1(Node a,Node b){
return a.v<b.v;
}
void init(){
memset(C,0,sizeof(C));
memset(ind,0,sizeof(ind));
memset(a,0,sizeof(a));
}
int main(){
while(~scanf("%d",&N)&&N){
init();
for(int i=1;i<=N;i++){
scanf("%d",&a[i].v);
a[i].p = i;
}
sort(a+1,a+N+1,cmp1);
for(int i=1;i<=N;i++){
ind[a[i].p] = i;
}
ll ans=0;
for(int i=1;i<=N;i++){
add(ind[i],1);
ans+=i-getsum(ind[i]);
}
printf("%lld\n",ans);
}
return 0;
}

浙公网安备 33010602011771号