Stay Hungry,Stay Foolish!

agents-from-scratch

agents-from-scratch

https://github.com/fanqingsong/agents-from-scratch

Agents From Scratch

The repo is a guide to building agents from scratch. It builds up to an "ambient" agent that can manage your email with connection to the Gmail API. It's grouped into 4 sections, each with a notebook and accompanying code in the src/email_assistant directory. These section build from the basics of agents, to agent evaluation, to human-in-the-loop, and finally to memory. These all come together in an agent that you can deploy, and the principles can be applied to other agents across a wide range of tasks.

 

 

overview

 

eval

 

agent-inbox

 

HITL

https://langchain-ai.github.io/langgraph/how-tos/human_in_the_loop/add-human-in-the-loop/#pause-using-interrupt

from langgraph.types import interrupt, Command

def human_node(state: State):
    value = interrupt( 
        {
            "text_to_revise": state["some_text"] 
        }
    )
    return {
        "some_text": value 
    }


graph = graph_builder.compile(checkpointer=checkpointer) 

# Run the graph until the interrupt is hit.
config = {"configurable": {"thread_id": "some_id"}}
result = graph.invoke({"some_text": "original text"}, config=config) 
print(result['__interrupt__']) 
# > [
# >    Interrupt(
# >       value={'text_to_revise': 'original text'},
# >       resumable=True,
# >       ns=['human_node:6ce9e64f-edef-fe5d-f7dc-511fa9526960']
# >    )
# > ]

print(graph.invoke(Command(resume="Edited text"), config=config)) 
# > {'some_text': 'Edited text'}

 

https://docs.langchain.com/oss/python/langgraph/interrupts#full-example

Common patterns

The key thing that interrupts unlock is the ability to pause execution and wait for external input. This is useful for a variety of use cases, including:

  • Approval workflows: Pause before executing critical actions (API calls, database changes, financial transactions)
  • Review and edit: Let humans review and modify LLM outputs or tool calls before continuing
  • Interrupting tool calls: Pause before executing tool calls to review and edit the tool call before execution
  • Validating human input: Pause before proceeding to the next step to validate human input

 

import sqlite3
from typing import Literal, Optional, TypedDict

from langgraph.checkpoint.memory import MemorySaver
from langgraph.graph import StateGraph, START, END
from langgraph.types import Command, interrupt


class ApprovalState(TypedDict):
    action_details: str
    status: Optional[Literal["pending", "approved", "rejected"]]


def approval_node(state: ApprovalState) -> Command[Literal["proceed", "cancel"]]:
    # Expose details so the caller can render them in a UI
    decision = interrupt({
        "question": "Approve this action?",
        "details": state["action_details"],
    })

    # Route to the appropriate node after resume
    return Command(goto="proceed" if decision else "cancel")


def proceed_node(state: ApprovalState):
    return {"status": "approved"}


def cancel_node(state: ApprovalState):
    return {"status": "rejected"}


builder = StateGraph(ApprovalState)
builder.add_node("approval", approval_node)
builder.add_node("proceed", proceed_node)
builder.add_node("cancel", cancel_node)
builder.add_edge(START, "approval")
builder.add_edge("approval", "proceed")
builder.add_edge("approval", "cancel")
builder.add_edge("proceed", END)
builder.add_edge("cancel", END)

# Use a more durable checkpointer in production
checkpointer = MemorySaver()
graph = builder.compile(checkpointer=checkpointer)

config = {"configurable": {"thread_id": "approval-123"}}
initial = graph.invoke(
    {"action_details": "Transfer $500", "status": "pending"},
    config=config,
)
print(initial["__interrupt__"])  # -> [Interrupt(value={'question': ..., 'details': ...})]

# Resume with the decision; True routes to proceed, False to cancel
resumed = graph.invoke(Command(resume=True), config=config)
print(resumed["status"])  # -> "approved"

 

use-subgraphs

https://docs.langchain.com/oss/python/langgraph/use-subgraphs

When adding subgraphs, you need to define how the parent graph and the subgraph communicate:

from typing_extensions import TypedDict
from langgraph.graph.state import StateGraph, START

class SubgraphState(TypedDict):
    bar: str

# Subgraph

def subgraph_node_1(state: SubgraphState):
    return {"bar": "hi! " + state["bar"]}

subgraph_builder = StateGraph(SubgraphState)
subgraph_builder.add_node(subgraph_node_1)
subgraph_builder.add_edge(START, "subgraph_node_1")
subgraph = subgraph_builder.compile()

# Parent graph

class State(TypedDict):
    foo: str

def call_subgraph(state: State):
    # Transform the state to the subgraph state
    subgraph_output = subgraph.invoke({"bar": state["foo"]})  
    # Transform response back to the parent state
    return {"foo": subgraph_output["bar"]}

builder = StateGraph(State)
builder.add_node("node_1", call_subgraph)
builder.add_edge(START, "node_1")
graph = builder.compile()

 

from typing_extensions import TypedDict
from langgraph.graph.state import StateGraph, START

class State(TypedDict):
    foo: str

# Subgraph

def subgraph_node_1(state: State):
    return {"foo": "hi! " + state["foo"]}

subgraph_builder = StateGraph(State)
subgraph_builder.add_node(subgraph_node_1)
subgraph_builder.add_edge(START, "subgraph_node_1")
subgraph = subgraph_builder.compile()

# Parent graph

builder = StateGraph(State)
builder.add_node("node_1", subgraph)  
builder.add_edge(START, "node_1")
graph = builder.compile()

 

posted @ 2025-10-27 09:46  lightsong  阅读(4)  评论(0)    收藏  举报
千山鸟飞绝,万径人踪灭