迟滞比较器电路分析
基于运放搭建的正、反向比较器电路,只有一个门限电压,其电路稳定性差,特别是在门限电压附近,若是遇到一定的噪音干扰,则比较器的输出,时而最大,时而最小,稳定性差;
为了提高稳定性,我们可以采用正反馈的比较器电路,即迟滞比较器电路。其电路有两个门限电压,具有一定的延迟特性,稳定性良好。
     
   
  
需求一: 如果我们需要设计一个比较系统,在2.5v以上输出高信号,2.5v以下输出低信号,默认0.1v左右的抗干扰性能。那么针对这个系统,其上限门电压为2.5+0.1/2=2.55v;其下门限电压为2.5-0.1/2=2.45v;0.1v=Vph-Vpl求出R1/R2=49.
下面我们再来计算系统需要施加的参考电压Vref为多少?通过上下限电压的任意一个即可计算出Vref=2.5V即可。
 
            
下面我们来看一下,这个电路,这个迟滞比较器其实就是施密特触发器电路的原型。其输出为Vin>2.55v,输出为o,vin<2.45v时,输出为正;当电压介于两者之间时,输出状态不确定,跟VOUT的上一状态有关。那么这个电路的稳定性如何呢,假设输出电压为2.4v、2.48v、2.5v、2.53v、2.48v,2.52v。来来回回在2.5v附近跳动,这个时候你就发现这个电路的好处了,稳定性极好。根据其输出曲线,可以看到其输出结果为5v、5v、5v、5v、5v、5v。可以看到输出很稳定,一直没发生改变,抗干扰性好。这个电路跟我们的需求是相反的,其在vin>2.5v时,输出为0,而我们要求输出为正最大值。因此还需要进一步改进,如下:
                                             
通过可调电阻vr1,提供需要的参考电压,这里调节为2.5v。为什么要增加一级射极跟随电路呢,简单的通过分压可以获得任意所需的参考电压,但这种参考电压的其输出电阻较大(相当于可调电阻VR1的两个电阻的并联值),如果想让它作为一个电压源,则其内阻应该很小,这显然不符合要求。如果直接为下一级电路工作,例如直接连接到R2,则VREF=2.5v的电压必然发生改变;如果增加一个射极跟随器电路,其优点是输入电阻高,输出电阻小。其输出电阻小,作为下一级的输入,相当于输入电阻小,可以看做电压源。

迟滞比较器的应用范围很广,他相对于普通的比较器而言,接入了一个正反馈,所以有了一个迟滞范围,具体情况我们在下面进行分析,所以搞干扰性能很好。对于输入信号有抖动的情况下可以保证输出电平的稳定。下面我们来分析一下这个电路。
提到比较器,那么肯定会有一个基准,我们称其为Vref,也就是图中的那个3V的稳压管。500Ω的电阻是稳压管的偏置电阻,限流作用。这个Vref通过100K电阻加到了358的同相端,同时,Vout也通过20K的正反馈加到了358的同相端,这两个电压是叠加的,那么根据叠加定理,可以写出同相端电压(Vp)的公式。
Vp=Vref*20K/(100K+20K)+Vout*100K/(100K+20K)
其门限为:
Uh=Vref*20K/(100K+20K)+Voh*100K/(100K+20K)
Ul=Vref*20K/(100K+20K)+Vol*100K/(100K+20K)
门限宽度为:
∆U=Uh-Ul=(Voh-Vol)*100K/(100K+20K)
由358的datasheet可知,358的输出摆幅为0-(Vcc-1.5),代入上式计算,所以该比较器的门限电压为:
Uh=4.25V    Ul=0.5V 
∆U=3.75V
即本电路的滞回范围是4.25-0.5=3.75V。
当反相端输入电压超过4.25V时,比较器输出低电平0V,当反相端电压即输入电压降至0.5V以下时,比较器翻转,输出高电平Vcc-1.5V即,4.5V。
同时,由上面公式可知,门限宽度与基准电压无关,只与输出摆幅和两电阻大小相关。
此电路也可设计成同相端输入的,基准放在反相端,感兴趣的同学可以试一下,公式的推导与上面类似。
 
                     
                    
                 
                    
                
 
                
            
         
         浙公网安备 33010602011771号
浙公网安备 33010602011771号