[OI]省选前模板整理
省选前把板子整理一遍,如果发现有脑抽写错的情况,欢迎各位神犇打脸 :)
数学知识
数论:
//组合数 //C(n,m) 在n个数中选m个的方案数 ll C[N][N]; void get_C(int n) { for(int i=1;i<=n;i++) { C[i][i]=C[i][0]=1; for(int j=1;j<i;j++) C[i][j]=(C[i-1][j]+C[i-1][j-1])%mod; } } //欧几里得算法 //(a,b) ll gcd(ll a,ll b) { return b==0? a:gcd(b,a%b); } //拓展欧几里得算法 //解同余方程 a*x+b*y = (a,b) ll exgcd(ll a,ll b,ll& d,ll& x,ll& y) { if(!b) { d=a; x=1; y=0; } else { exgcd(b,a%b,d,y,x); y-=x*(a/b); } } //逆元 //a*inv(a,n) = 1 mod n ll inv(ll a,ll n) { ll d,x,y; exgcd(a,n,d,x,y); return d==1? (x+n)%n:-1; } //lucas定理 //计算较大,有模数的组合数 ll fac[N]; void get_pre(int n) { for(int i=1;i<=n;i++) fac[i]=(fac[i-1]*i)%mod; } ll C(ll n,ll m,ll mod) { if(n<m) return 0; if(n<mod&&m<mod) return fac[n]*inv(fac[m],mod)%mod*inv(fac[n-m],mod)%mod; return C(n/mod,m/mod,mod)*C(n%mod,m%mod,mod)%mod; } //快速幂 //a^p % mod ll pow(ll a,ll p,ll mod) { ll ans=1; while(p) { if(p&1) ans=(ans*a)%mod; a=(a*a)%mod; p>>=1; } return ans; } //中国剩余定理 //解线性同余方程组 //sigma{ ai*(1-ai*mi) } % M , ai*mi+wi*y=1 ll a[N],m[N]; ll china(int n) { ll M=1,d,x=0,y; for(int i=1;i<=n;i++) M*=m[i]; for(int i=1;i<=n;i++) { ll w=M/m[i]; exgcd(m[i],w,d,d,y); x=(x+y*w*a[i])%M; } return (x+M)%M; } //大步小步算法 //计算a^x=b mod n中的最小x map<int,int> mp; int BSGS(int a,int b,int n) { int m=sqrt(n)+1,e=1,i; int v=inv(pow(a,m,n),n); mp[e]=0; for(i=1;i<m;i++) { e=(e*m)%n; if(!mp.count(e)) mp[e]=i; } for(i=0;i<m;i++) { if(mp.count(b)) return i*m+mp[b]; b=(b*v)%mod; } return -1; } //快速筛法求素数表 int su[N],vis[N]; void get_su(int n) { for(int i=2;i<=n;i++) { if(!vis[i]) su[++su[0]]=i; for(int j=1;j<=su[0]&&i*su[j]<=n;j++) { vis[i*su[j]]=1; if(i%su[j]==0) break; } } } //欧拉函数 //phi(n)小于n的数中与n互素的数的个数 ll get_phi(int n) { int m=sqrt(n)+1; ll ans=n; for(int i=2;i<=m;i++) if(n%i==0) { ans=ans/i*(i-1); while(n%i==0) n/=i; } if(n>1) ans=ans/n*(n-1); return ans; } ll phi[N]; void get_phi_table(int n) { phi[1]=1; for(int i=2;i<=n;i++) if(!phi[i]) { for(int j=i;j<=n;j+=i) { if(!phi[j]) phi[j]=j; phi[j]=phi[j]/i*(i-1); } } }
//莫比乌斯函数 int mu[N],su[N],vis[N]; void get_mu(int n) { mu[1]=1; for(int i=2;i<=n;i++) { if(!vis[i]) mu[i]=-1,su[++su[0]]=i; for(int j=1;j<=su[0]&&i*su[j]<=n;j++) { vis[i*su[j]]=1; if(i%su[j]==0) mu[i*su[j]]=0; else mu[i*su[j]]=-mu[i]; } } } //高斯消元 //解线性方程组 double a[N][N]; void gause(int n) { for(int i=1;i<=n;i++) { int r=i; for(int j=i+1;j<=n;j++) if(fabs(a[j][i])>fabs(a[r][i])) r=i; for(int j=1;j<=n+1;j++) swap(a[i][j],a[r][j]); for(int j=n+1;j>=i;j--) for(int k=i+1;k<=n;k++) a[k][j]-=a[k][i]/a[i][i]*a[i][j]; } for(int i=n;i;i--) { for(int j=i+1;j<=n;j++) a[i][n+1]-=a[j][n+1]*a[i][j]; a[i][n+1]/=a[i][i]; } }
高精度:
int trans(char* s,int st,int ed) { int x=0; for(int i=st;i<ed;i++) x=x*10+s[i]-'0'; return x; } struct Bign { int len; ll N[maxn]; Bign() { len=0; memset(N,0,sizeof(N)); } Bign(ll num) { *this=num; } Bign(const char* s) { *this=s; } void print() { printf("%d",N[len-1]); for(int i=len-2;i>=0;i--) printf("%08d",N[i]); puts(""); } Bign operator = (const ll x) { ll num=x; while(num>base) { N[len++]=num%base; num/=base; } if(num) N[len++]=num; return *this; } Bign operator = (char* s) { int L=strlen(s); len=(L-1)/wlen+1; for(int i=0;i<len;i++) { int ed=L-i*wlen; int st=max(0,ed-wlen); N[i]=trans(s,st,ed); } return *this; } bool operator < (const Bign& B) const { if(len!=B.len) return len<B.len; for(int i=len-1;i>=0;i--) if(N[i]!=B.N[i]) return N[i]<B.N[i]; return 0; } bool operator <= (const Bign& B) const { return !(B<(*this)); } void clear() { while(len>1&&N[len-1]==0) len--; } Bign operator + (const Bign& B) const { Bign C; C.len=max(len,B.len)+10; for(int i=0;i<C.len;i++) { C.N[i]+=N[i]+B.N[i]; C.N[i+1]+=C.N[i]/base; C.N[i]%=base; } C.clear(); return C; } Bign operator - (Bign B) { Bign C=*this; C.len=max(C.len,B.len); for(int i=0;i<C.len;i++) { if(C.N[i]<B.N[i]) C.N[i+1]--,C.N[i]+=base; C.N[i]=C.N[i]-B.N[i]; } C.clear(); return C; } Bign operator * (const Bign& B) const { Bign C; C.len=len+B.len; for(int i=0;i<len;i++) for(int j=0;j<B.len;j++) C.N[i+j]+=N[i]*B.N[j]; for(int i=0;i<C.len;i++) { C.N[i+1]+=C.N[i]/base; C.N[i]%=base; } C.clear(); return C; } Bign operator / (const Bign& B) { Bign C,F; C.len=len; for(int i=len-1;i>=0;i--) { F=F*base; F.N[0]=N[i]; while(B<=F) { F=F-B; C.N[i]++; } } C.clear(); return C; } Bign operator % (const Bign& B) { Bign r=*this/B; return *this-r*B; } }A,B;
矩阵乘法:
//矩阵乘法 struct Mat { int r,c; ll N[maxn][maxn]; Mat(int r=0,int c=0) { this->r=r,this->c=c; memset(N,0,sizeof(N)); } Mat operator * (const Mat& B) const { Mat C(r,B.c); for(int i=0;i<r;i++) for(int j=0;j<B.c;j++) for(int k=0;k<c;k++) C.N[i][j]=(C.N[i][j]+N[i][k]*B.N[k][j])%mod; return C; } Mat operator ^ (int p) { Mat ans(r,r),tmp=*this; for(int i=0;i<r;i++) ans.N[i][i]=1; while(p) { if(p&1) ans=ans*tmp; tmp=tmp*tmp; p>>=1; } return ans; } };
数据结构
树状数组:
//树状数组 int C[N],mx; void Add(int x,int v) { for(int i=x;i<=mx;i+=i&-i) C[i]+=v; } int query(int x) { int ans=0; for(int i=x;i;i-=i&-i) ans+=C[i]; return ans; }
线段树:
//线段树 //区间加,区间乘,区间求和 int mod; struct Tnode { int u,l,r; ll sum,add,mul; void mulv(ll x) { sum=(sum*x)%mod; mul=(mul*x)%mod; add=(add*x)%mod; } void addv(ll x) { sum=(sum+(r-l+1)*x%mod)%mod; add=(add+x)%mod; } void pushdown() ; void maintain() ; }T[N]; void Tnode::pushdown() { if(mul^1) { T[u<<1].mulv(mul); T[u<<1|1].mulv(mul); mul=1; } if(add) { T[u<<1].addv(add); T[u<<1|1].addv(add); add=0; } } void Tnode::maintain() { sum=(T[u<<1].sum+T[u<<1|1].sum)%mod; } void update(int u,int L,int R,int x,int f) { T[u].pushdown(); if(L<=T[u].l&&T[u].r<=R) { if(!f) T[u].addv(x); else T[u].mulv(x); } else { int mid=T[u].l+T[u].r>>1; if(L<=mid) update(u<<1,L,R,x,f); if(mid<R) update(u<<1|1,L,R,x,f); T[u].maintain(); } } ll query(int u,int L,int R) { T[u].pushdown(); if(L<=T[u].l&&T[u].r<=R) return T[u].sum; else { int mid=T[u].l+T[u].r>>1; ll ans=0; if(L<=mid) ans=(ans+query(u<<1,L,R))%mod; if(mid<R) ans=(ans+query(u<<1|1,L,R))%mod; return ans; } } ll a[N]; void build(int u,int l,int r) { T[u]=(Tnode){ u,l,r,0,0,1 }; if(l==r) { T[u].sum=a[l]; } else { int mid=l+r>>1; build(u<<1,l,mid); build(u<<1|1,mid+1,r); T[u].maintain(); } }
Treap:
//Treap struct Node { Node *ch[2]; int v,r,m,w,s; Node(int v):v(v) { ch[0]=ch[1]=NULL; r=rand(); s=w=1; } int cmp(int x) { if(v==x) return -1; return x<v? 0:1; } void maintain() { s=w; if(ch[0]!=NULL) s+=ch[0]->s; if(ch[1]!=NULL) s+=ch[1]->s; } }; void rotate(Node* &o,int d) { Node* k=o->ch[d^1];o->ch[d^1]=k->ch[d];k->ch[d]=o; o->maintain(); k->maintain(); o=k; } void insert(Node *&o,int x) { if(o==NULL) o=new Node(x); int d=o->cmp(x); if(d==-1) o->w++; else { insert(o->ch[d],x); if(o->ch[d]->r > o->r) rotate(o,d^1); } o->maintain(); } void remove(Node *&o,int x) { int d=o->cmp(x); if(d==-1) { if(o->s>1) { o->w--; o->maintain(); return ; } else { if(o->ch[0]!=NULL&&o->ch[1]!=NULL) { int d2=o->ch[0]->r > o->ch[1]->r ? 1:0; rotate(o,d2); remove(o->ch[d2],x); } else { if(o->ch[0]!=NULL) o=o->ch[0]; else o=o->ch[1]; delete o; } } } else remove(o->ch[d],x); if(o!=NULL) o->maintain(); } int kth(Node* o,int rk) { if(o==NULL) return 0; int s=o->ch[0]==NULL? 0:o->ch[0]->s; if(rk==s+1) return o->v; else if(rk<=s) return kth(o->ch[0],rk); else return kth(o->ch[1],rk-s-o->w); } int rank(Node* o,int x) { if(o==NULL) return 0; int s=o->ch[0]==NULL? 0:o->ch[0]->s; int d=o->cmp(x); if(d==-1) return 1; else if(d==0) return rank(o->ch[0],x); else return s+o->w+rank(o->ch[1],x); } int tmp; void before(Node* o,int x) { if(o==NULL) return ; if(o->v<x) { tmp=max(tmp,o->v); before(o->ch[1],x); } else before(o->ch[0],x); } void after(Node* o,int x) { if(o==NULL) return ; if(o->v>x) { tmp=min(tmp,o->v); after(o->ch[0],x); } else after(o->ch[1],x); }
splay:
//splay自上而下 struct Node { Node *ch[2]; int s; int cmp(int x) { int d=x-ch[0]->s; if(d==1) return -1; return d<=0? 0:1; } void maintain() { s=ch[0]->s+ch[1]->s; } void pushdown() {} }mempool[N],*G=mempool; Node* null=new Node(); void rotate(Node* &o,int d) { Node* k=o->ch[d^1]; o->ch[d^1]=k->ch[d],k->ch[d]=o; o->maintain(); k->maintain(); o=k; } void splay(Node* &o,int k) { o->pushdown(); int d=o->cmp(k); if(d==1) k-=o->ch[0]->s+1; if(d!=-1) { Node* p=o->ch[d]; p->pushdown(); int d2=p->cmp(k),k2=d2==0? k:k-p->ch[d]->s-1; if(d2!=-1) { splay(p->ch[d2],k2); if(d==d2) rotate(o,d^1); else rotate(o->ch[d],d); } rotate(o,d^1); } } Node* merge(Node* left,Node* right) { splay(left,left->s); left->ch[1]=right,left->maintain(); return left; } void split(Node* o,int k,Node*&left,Node*&right) { splay(o,k); left=o,right=left->ch[1],left->ch[1]=NULL; left->maintain(); } Node* build(int l,int r) { if(r<l) return null; int mid=l+r>>1; G->s=1; G->ch[0]=build(l,mid-1); G->ch[1]=build(mid+1,r); G->maintain(); return G++; }
主席树:
//主席树 struct Tnode { Tnode *ls,*rs; int sum; } *T[N*50],mempool[N*50],*G=mempool; Tnode* Nw(Tnode* l,Tnode* r,int x) { G->ls=l,G->rs=r,G->sum=x; return G++; } Tnode* build(Tnode* p,int l,int r,int pos) { if(l==r) return Nw(T[0],T[0],p->sum+1); else { int mid=l+r>>1; if(pos<=mid) return Nw(build(p->ls,l,mid,pos),p->rs,p->sum+1); else return Nw(p->ls,build(p->rs,mid+1,r,pos),p->sum+1); } } int query(Tnode* x,int l,int r,int pos) { if(l==r) return x->sum; else { int mid=l+r>>1; if(pos<=mid) return query(x->ls,l,mid,pos); else return query(x->rs,mid+1,r,pos); } }
Link-Cut-Tree
//Link-Cut-Tree namespace LCT { struct Node { Node *ch[2],*fa; int rev; //others v Node() {}; Node(int x) ; void reverse() { swap(ch[0],ch[1]); rev^=1; } void up_push() { if(fa->ch[0]==this||fa->ch[1]==this) fa->up_push(); if(rev) { ch[0]->reverse(); ch[1]->reverse(); rev=0; } } void maintain() { } } T[N<<1],*null=&T[0]; Node::Node(int x) { ch[0]=ch[1]=fa=null; rev=0; //v=x; } void rot(Node* o,int d) { Node* p=o->fa; p->ch[d]=o->ch[d^1]; o->ch[d^1]->fa=p; o->ch[d^1]=p; o->fa=p->fa; if(p==p->fa->ch[0]) p->fa->ch[0]=o; else if(p==p->fa->ch[1]) p->fa->ch[1]=o; p->fa=o; p->maintain(); } void splay(Node* o) { o->up_push(); Node *nf,*nff; while(o->fa->ch[0]==o||o->fa->ch[1]==o) { nf=o->fa,nff=nf->fa; if(o==nf->ch[0]) { if(nf==nff->ch[0]) rot(nf,0); rot(o,0); } else { if(nf==nff->ch[1]) rot(nf,1); rot(o,1); } } o->maintain(); } void Access(Node* o) { Node *son=null; while(o!=null) { splay(o); o->ch[1]=son; o->maintain(); son=o; o=o->fa; } } void evert(Node* o) { Access(o); splay(o); o->reverse(); } void Link(Node* u,Node* v) { evert(u); u->fa=v; } void Cut(Node* u,Node* v) { evert(u); Access(v),splay(v); v->ch[0]=u->fa=null; v->maintain(); } Node* find(Node* o) { while(o->fa!=null) o=o->fa; return o; } } using namespace LCT ;
图
2-SAT:
//2-sat struct TwoSAT { int n; vector<int> g[N<<1]; int st[N<<1],mark[N<<1],top; bool dfs(int x) { if(mark[x^1]) return 0; if(mark[x]) return 1; mark[x]=1; st[++top]=x; for(int i=0;i<g[x].size();i++) if(!dfs(g[x][i])) return 0; return 1; } void init(int n) { this->n=n; for(int i=0;i<2*n;i++) g[i].clear(); memset(mark,0,sizeof(mark)); } void addc(int x,int xval,int y,int yval) { x=x*2+xval; y=y*2+yval; g[x^1].push_back(y); g[y^1].push_back(x); } bool solve() { for(int i=0;i<2*n;i+=2) { if(!mark[i]&&!mark[i+1]) { top=0; if(!dfs(i)) { while(top) mark[st[top--]]=0; if(!dfs(i+1)) return 0; } } } return 1; } } s;
有向图的强联通分量:
//tarjan求SCC struct Edge { int v,nxt; }e[M]; int en=1,front[N]; void adde(int u,int v) { e[++en]=(Edge){v,front[u]}; front[u]=en; } int n,top,dfn; int st[N],sccno[N],scc_cnt,pre[N],lowlink[N]; void tarjan(int u) { pre[u]=lowlink[u]=++dfn; st[++top]=u; trav(u,i) { int v=e[i].v; if(!pre[v]) { tarjan(v); lowlink[u]=min(lowlink[u],lowlink[v]); } else if(!sccno[v]) lowlink[u]=min(lowlink[u],pre[v]); } if(lowlink[u]==pre[u]) { scc_cnt++; for(;;) { int x=st[top--]; sccno[x]=scc_cnt; if(x==u) break; } } }
无向图的边的双连通分量:
//BCC struct Edge { int u,v,nxt; }e[M]; int en=1,front[N]; void adde(int u,int v) { e[++en]=(Edge){u,v,front[u]}; front[u]=en; } Edge st[N]; vector<int> bcc[N]; int pre[N],iscut[N],bccno[N],top,dfn,bcc_cnt; int dfs(int u,int fa) { int lowu=pre[u]=++dfn; int child=0; trav(u,i) { int v=e[i].v; Edge E=e[i]; if(!pre[v]) { st[++top]=E; child++; int lowv=dfs(v,u); lowu=min(lowu,lowv); if(lowv>=pre[u]) { iscut[u]=1; bcc_cnt++; for(;;) { Edge x=st[top--]; if(bccno[x.u]!=bcc_cnt) { bccno[x.u]=bcc_cnt; bcc[bcc_cnt].push_back(x.u); } if(bccno[x.v]!=bcc_cnt) { bccno[x.v]=bcc_cnt; bcc[bcc_cnt].push_back(x.v); } if(x.u==u&&x.v==v) break; } } } else if(pre[v]<pre[u] && v!=fa) { st[++top]=E; lowu=min(lowu,pre[v]); } } if(fa<0&&child==1) iscut[u]=0; return lowu; }
最短路:
//spfa struct Edge { int v,w,nxt; }e[M]; int en=1,front[N]; void adde(int u,int v,int w) { e[++en]=(Edge){v,w,front[u]}; front[u]=en; } queue<int> q; int inq[N],dis[N]; void spfa(int s) { dis[s]=0; inq[s]=1; q.push(s); while(!q.empty()) { int u=q.front(); q.pop(); inq[u]=0; trav(u,i) { int v=e[i].v; if(dis[v]>dis[u]+e[i].w) { dis[v]=dis[u]+e[i].w; if(!inq[v]) { inq[v]=1; q.push(v); } } } } } //dijkstra struct Node { int id,dis; bool operator < (const Node& rhs) const { return dis>rhs.dis; } }; priority_queue<Node> q; int n,m,s; int vis[N],dis[N]; void dijkstra(int s) { FOR(i,1,n) dis[i]=inf; dis[s]=0; q.push((Node){s,0}); while(!q.empty()) { int u=q.top().id; q.pop(); if(vis[u]) continue; vis[u]=1; trav(u,i) { int v=e[i].v; if(dis[v]>dis[u]+e[i].w) { dis[v]=dis[u]+e[i].w; q.push((Node){v,dis[v]}); } } } }
最小生成树:
//Kruskal int fa[N]; int find(int u) { if(!fa[u] || u==fa[u]) return fa[u]=u; return fa[u]=find(fa[u]); } struct Edge { int u,v,w; bool operator < (const Edge& rhs) const { return w<rhs.w; } }e[M]; int tot; void Kruskal() { sort(e+1,e+tot+1); for(int i=1;i<=tot;i++) { int u=e[i].u,v=e[i].v; int x=find(u),y=find(v); if(x!=y) { fa[x]=y; //加入树边(u,v) } } }
最大流:
//Dinic算法求最大流 struct Edge { int u,v,cap,flow; }; struct Dinic { int d[N],cur[N],vis[N]; vector<Edge> es; vector<int> g[N]; queue<int> q; void AddEdge (int u,int v,int w) { es.push_back((Edge){u,v,w,0}); es.push_back((Edge){v,u,0,0}); int m=es.size(); g[u].push_back(m-2); g[v].push_back(m-1); } bool bfs(int s,int t) { memset(vis,0,sizeof(vis)); d[s]=0; vis[s]=1; q.push(s); while(!q.empty()) { int u=q.front(); q.pop(); FOR(i,0,(int)g[u].size()-1) { Edge& e=es[g[u][i]]; int v=e.v; if(e.cap>e.flow&&!vis[v]) { vis[v]=1; d[v]=d[u]+1; q.push(v); } } } return vis[t]; } int dfs(int u,int a,int t) { if(u==t||a==0) return a; int flow=0,f; for(int& i=cur[u];i<g[u].size();i++) { Edge& e=es[g[u][i]]; int v=e.v; if(d[v]==d[u]+1&&(f=dfs(v,min(a,e.cap-e.flow),t))>0) { e.flow+=f; es[g[u][i]^1].flow-=f; flow+=f,a-=f; if(!a) break; } } return flow; } int maxflow(int s,int t) { int flow=0; while(bfs(s,t)) { memset(cur,0,sizeof(cur)); flow+=dfs(s,inf,t); } return flow; } } dc;
最小费用最大流:
/最短路算法求最小费用最大流 struct Edge { int u,v,cap,flow,cost; Edge(int _,int __,int ___,int ____,int _____) { u=_,v=__,cap=___,flow=____,cost=_____; } }; struct MCMF { int n,m,s,t; int d[N],p[N],a[N],inq[N]; vector<Edge> es; vector<int> g[N]; queue<int> q; void init(int n) { this->n=n; es.clear(); for(int i=0;i<=n;i++) g[i].clear(); } void AddEdge(int u,int v,int w,int c) { es.push_back(Edge(u,v,w,0,c)); es.push_back(Edge(v,u,0,0,-c)); int m=es.size(); g[u].push_back(m-2); g[v].push_back(m-1); } bool spfa(int s,int t,ll& flow,ll& cost) { memset(inq,0,sizeof(inq)); for(int i=0;i<=n;i++) d[i]=inf; inq[s]=1; d[s]=p[s]=0; a[s]=inf; q.push(s); while(!q.empty()) { int u=q.front(); q.pop(); inq[u]=0; for(int i=0;i<g[u].size();i++) { Edge& e=es[g[u][i]]; int v=e.v; if(d[v]>d[u]+e.cost && e.cap>e.flow) { d[v]=d[u]+e.cost; a[v]=min(a[u],e.cap-e.flow); p[v]=g[u][i]; if(!inq[v]) inq[v]=1 , q.push(v); } } } if(d[t]==inf) return 0; flow+=a[t],cost+=a[t]*d[t]; for(int x=t;x!=s;x=es[p[x]].u) { es[p[x]].flow+=a[t]; es[p[x]^1].flow-=a[t]; } return 1; } void mcmf(int s,int t,ll& cost,ll& flow) { flow=cost=0; while(spfa(s,t,cost,flow)) ; } } mc;
KM算法:
//KM算法求二分图的最佳完美匹配 struct KM { int slack[N],res[N]; int l[N],r[N],lx[N],rx[N],g[N][N]; void clear(int n) { for(int i=1;i<=n;i++) { res[i]=0; for(int j=1;j<=n;j++) g[i][j]=-1; } } bool find(int x,int n) { lx[x]=1; for(int i=1;i<=n;i++) if(!rx[i]&&g[x][i]!=-1) { int tmp=g[x][i]-l[x]-r[i]; if(!tmp) { rx[i]=1; if(!res[i]||find(res[i],n)) { res[i]=x; return 1; } } else slack[i]=min(slack[i],tmp); } return 0; } int solve(int n) { if(!n) return 0; for(int i=1;i<=n;i++) r[i]=0; for(int i=1;i<=n;i++) { l[i]=INF; for(int j=1;j<=n;j++) if(g[i][j]!=-1) l[i]=min(l[i],g[i][j]); } for(int i=1;i<=n;i++) { for(int j=1;j<=n;j++) slack[j]=INF; for(;;) { for(int j=1;j<=n;j++) lx[j]=rx[j]=0; if(find(i,n)) break; int mini=INF; for(int i=1;i<=n;i++) if(!rx[i]) mini=min(mini,slack[i]); for(int i=1;i<=n;i++) { if(lx[i]) l[i]+=mini; if(rx[i]) r[i]-=mini; else slack[i]-=mini; } } } int ans=0; for(int i=1;i<=n;i++) ans+=l[i]+r[i]; return ans; } } km;
树
LCA:
//倍增法求LCA //倍增法可以在线构造 比较灵活 struct Edge { int v,nxt; }e[M]; int en=1,front[N]; void adde(int u,int v) { e[++en]=(Edge){v,front[u]}; front[u]=en; } int fa[N][D],dep[N]; void dfs(int u) { for(int i=1;i<D;i++) fa[u][i]=fa[fa[u][i-1]][i-1]; trav(u,i) { int v=e[i].v; if(v!=fa[u][0]) { fa[v][0]=u; dep[v]=dep[u]+1; dfs(v); } } } int lca(int u,int v) { if(dep[u]<dep[v]) swap(u,v); int t=dep[u]-dep[v]; for(int i=0;i<D;i++) if(t&(1<<i)) u=fa[u][i]; if(u==v) return u; for(int i=D-1;i>=0;i--) if(fa[u][i]!=fa[v][i]) u=fa[u][i],v=fa[v][i]; return fa[u][0]; } //树链剖分求LCA //比较快 struct Edge { int v,nxt; }e[M]; int en=1,front[N]; void adde(int u,int v) { e[++en]=(Edge){v,front[u]}; front[u]=en; } int fa[N],top[N],siz[N],dep[N],son[N]; void dfs1(int u) { siz[u]=1; son[u]=0; trav(u,i) { int v=e[i].v; if(v!=fa[u]) { fa[v]=u; dep[v]=dep[u]+1; dfs1(v); siz[u]+=siz[v]; if(siz[v]>siz[son[u]]) son[u]=v; } } } void dfs2(int u,int tp) { top[u]=tp; if(son[u]) dfs2(son[u],tp); trav(u,i) if(e[i].v!=fa[u]&&e[i].v!=son[u]) dfs2(e[i].v,e[i].v); } int lca(int u,int v) { while(top[u]!=top[v]) { if(dep[top[u]]<dep[top[v]]) swap(u,v); u=fa[top[u]]; } return dep[u]<dep[v]? u:v; }
树链剖分:
//树链剖分 struct Edge { int v,nxt; }e[M]; int en=1,front[N]; void adde(int u,int v) { e[++en]=(Edge){v,front[u]}; front[u]=en; } int fa[N],top[N],siz[N],dep[N],son[N],bl[N],dfn; void dfs1(int u) { siz[u]=1; son[u]=0; trav(u,i) { int v=e[i].v; if(v!=fa[u]) { fa[v]=u; dep[v]=dep[u]+1; dfs1(v); siz[u]+=siz[v]; if(siz[v]>siz[son[u]]) son[u]=v; } } } void dfs2(int u,int tp) { top[u]=tp; bl[u]=++dfn; if(son[u]) dfs2(son[u],tp); trav(u,i) if(e[i].v!=fa[u]&&e[i].v!=son[u]) dfs2(e[i].v,e[i].v); } //以合适的数据结构T维护重链 int ans; int query(int u,int v) { while(top[u]!=top[v]) { if(dep[top[u]]<dep[top[v]]) swap(u,v); ans<-query(T,bl[top[u]],bl[u]); u=fa[top[u]]; } if(u==v) return ; if(dep[u]>dep[v]) swap(u,v); ans<-query(T,bl[u],bl[v]); <-ans } //类似-查询树上任意两节点的方法 void modify() {}
点分治:
//点分治 struct Edge { int v,nxt; }e[M]; int en=1,front[N]; void adde(int u,int v) { e[++en]=(Edge){v,front[u]}; front[u]=en; } int rt,n,size,vis[N],siz[N],f[N],dep[N]; void get_root(int u,int fa) { siz[u]=1; f[u]=0; trav(u,i) { int v=e[i].v; if(v!=fa) { get_root(v,u); siz[u]+=siz[v]; if(siz[v]>f[u]) f[u]=siz[v]; } } f[u]=max(f[u],size-siz[u]); if(f[u]<f[rt]) rt=u; } void solve(int u) { vis[u]=1; //计算经过根u的信息 trav(u,i) if(!vis[e[i].v]) { //统计当前子树信息 //与前i-1个子树信息结合计算贡献 //将当前子树信息加入前i-1个子树信息 } trav(u,i) if(!vis[e[i].v]) { int v=e[i].v; size=siz[v]; rt=0; get_root(v,-1); solve(rt); } } int main() { //blabla size=f[0]=n; rt=0; get_root(rt,-1); solve(rt); }
字符串
KMP:
//KMP算法 int f[N]; char s[N]; void get_fail() { int j=0; int n=strlen(s+1); for(int i=2;i<=n;i++) { while(j&&s[j+1]!=s[i]) j=f[j]; if(s[j+1]==s[i]) j++; f[i]=j; } }
AC自动机:
//AC自动机 struct AC_auto { int sz,ch[N][26],f[N],val[N]; AC_auto() { sz=1; memset(ch,0,sizeof(ch)); } void insert(char* s) { int u=0; for(int i=0;s[i];i++) { int c=s[i]-'a'; if(!ch[u][c]) ch[u][c]=++sz; u=ch[u][c]; } val[u]=1; } void get_fail() { queue<int> q; f[0]=0; for(int c=0;c<26;c++) if(ch[0][c]) f[ch[0][c]]=0,q.push(ch[0][c]); while(!q.empty()) { int qr=q.front(); q.pop(); for(int c=0;c<26;c++) { int u=ch[qr][c]; if(!u) continue; q.push(u); int v=f[qr]; while(v&&!ch[v][c]) v=f[v]; if(val[ch[v][c]]) val[u]=1; f[u]=ch[v][c]; } } } };
后缀自动机:
//后缀自动机SAM struct SAM { int sz,last,fa[N],ch[N][26],l[N]; SAM() { sz=0; last=++sz; memset(l,0,sizeof(l)); memset(fa,0,sizeof(fa)); } void Add(int c) { int np=++sz,p=last; last=np; l[np]=l[p]+1; for(;p&&!ch[p][c];p=fa[p]) ch[p][c]=np; if(!p) fa[np]=1; else { int q=ch[p][c]; if(l[q]==l[p]+1) fa[np]=q; else { int nq=++sz; l[nq]=l[p]+1; memcpy(ch[nq],ch[q],sizeof(ch[q])); fa[nq]=fa[q]; fa[q]=fa[np]=nq; for(;q==ch[p][c];p=fa[p]) ch[p][c]=nq; } } } //do some other things } sam;
后缀数组:
//后缀数组 #define rep(a,b,c) for(int a=(b);a>=(c);a--) #define FOR(a,b,c) for(int a=(b);a<=(c);a++) char s[N]; int c[N],t[N],t2[N],height[N],rank[N],sa[N]; void build_sa(int m,int n) { int *x=t,*y=t2,p,k; FOR(i,0,m-1) c[i]=0; FOR(i,0,n-1) c[x[i]=s[i]]++; FOR(i,0,m-1) c[i]+=c[i-1]; rep(i,n-1,0) sa[--c[x[i]]]=i; for(k=1;k<=n;k<<=1) { p=0; FOR(i,n-k,n-1) y[p++]=i; FOR(i,0,n-1) if(sa[i]>=k) y[p++]=sa[i]-k; FOR(i,0,m-1) c[i]=0; FOR(i,0,n-1) c[x[y[i]]]++; FOR(i,0,m-1) c[i]+=c[i-1]; rep(i,n-1,0) sa[--c[x[y[i]]]]=y[i]; swap(x,y); p=1; x[sa[0]]=0; FOR(i,1,n-1) x[sa[i]]=y[sa[i]]==y[sa[i-1]]&&y[sa[i]+k]==y[sa[i-1]+k]? p-1:p++; if(p>=n) break; m=p; } } void get_height(int n) { FOR(i,0,n-1) rank[sa[i]]=i; int k=0; FOR(i,0,n-1) { if(k) k--; int j=sa[rank[i]-1]; while(s[i+k]==s[j+k]) k++; height[rank[i]]=k; } }
Manacher:
//Manacher算法 char s[N],a[N]; int p[N]; void Add(int l,int r) { l=l/2,r=r/2-1; if(l>r) return ; //q[++tot]=(Seg){l,r}; //[l,r]为一个极大回文串 } void Manacher() { int n=strlen(s+1); int m=n*2+1; for(int i=1;i<=n;i++) { a[i<<1]=s[i]; a[i<<1|1]='#'; } a[0]='+',a[1]='#',a[m+1]='-'; int mx=0,id; for(int i=1;i<=m;i++) { if(mx>i) p[i]=min(mx-i,p[id*2-i]); else p[i]=1; while(a[i-p[i]]==a[i+p[i]]) p[i]++; Add(i-p[i],i+p[i]); if(p[i]+i>mx) mx=i+p[i],id=i; } }
计算几何
计算几何基础知识:
//计算几何基础 const double eps = 1e-10; int dcmp(double x) { if(fabs(x)<eps) return 0; else return x<0? -1:1; } struct Pt { double x,y; Pt(double x=0,double y=0):x(x),y(y) {} }; typedef Pt vec; vec operator - (Pt A,Pt B) { return vec(A.x-B.x,A.y-B.y); } vec operator + (vec A,vec B) { return vec(A.x+B.x,A.y+B.y); } vec operator * (vec A,double p) { return vec(A.x*p , A.y*p); } bool operator < (const Pt& a,const Pt& b) { return a.x<b.x || (a.x==b.x && a.y<b.y); } bool operator == (const Pt& a,const Pt& b) { return dcmp(a.x-b.x)==0 && dcmp(a.y-b.y)==0; } double cross(vec A,vec B) { return A.x*B.y-A.y*B.x; } double Dot(vec A,vec B) { return A.x*B.x+A.y*B.y; } double Len(vec A) { return sqrt(Dot(A,A)); } double Angle(vec A,vec B) { return acos(Dot(A,B)/Len(A)/Len(B)); } //逆时针旋转rad角度 vec rotate(vec A,double rad) { return vec(A.x*cos(rad)-A.y*sin(rad) , A.x*sin(rad)+A.y*cos(rad)); } //法向量 左转90度 长度归1 vec Normal(vec A) { double L=Len(A); return vec(-A.y/L,A.x/L); } //判断点在线段上 bool OnSeg(Pt P,Pt a1,Pt a2) { return dcmp(cross(a1-P,a2-P))==0 && dcmp(Dot(a1-P,a2-P))<0; } //直线交点 Pt LineIntersection(Pt P,vec v,Pt Q,vec w) { vec u=P-Q; double t=cross(w,u)/cross(v,w); return P+v*t; } double DistoLine(Pt P,Pt A,Pt B) { vec v1=B-A,v2=P-A; return fabs(cross(v1,v2))/Len(v1); } //线段不含端点 判断相交 bool SegIntersection(Pt a1,Pt a2,Pt b1,Pt b2) { double c1=cross(a2-a1,b1-a1) , c2=cross(a2-a1,b2-a1) , c3=cross(b2-b1,a1-b1) , c4=cross(b2-b1,a2-b1); return dcmp(c1)*dcmp(c2)<0 && dcmp(c3)*dcmp(c4)<0; // b1 b2在线段a1a2的两侧 a1 a2在线段b1b2的两侧 规范相交 } //线段含端点 判断线段严格相交 bool SegInter(Pt s1, Pt e1, Pt s2, Pt e2) { if( min(s1.x, e1.x) <= max(s2.x, e2.x) && min(s1.y, e1.y) <= max(s2.y, e2.y) && min(s2.x, e2.x) <= max(s1.x, e1.x) && min(s2.y, e2.y) <= max(s1.y, e1.y) && cross(e1-s1,s2-s1) * cross(e1-s1,e2-s1) <= 0 && cross(e2-s2,s1-s2) * cross(e2-s2,e1-s2) <= 0 ) return true; return false; } //点到线段的距离 double DistoSeg(Pt P,Pt A,Pt B) { if(A==B) return Len(P-A); vec v1=B-A , v2=P-A , v3=P-B; if(dcmp(Dot(v1,v2))<0) return Len(v2); else if(dcmp(Dot(v1,v3))>0) return Len(v3); else return fabs(cross(v1,v2))/Len(v1); } //多边形面积 double PolygonArea(Pt* p,int n) { double S=0; for(int i=1;i<n-1;i++) S+=cross(p[i]-p[0],p[i+1]-p[0]); return S/2; }
凸包:
//凸包 const int N = 400000+10; const double PI = acos(-1.0); const double eps = 1e-12; int dcmp(double x) { if(fabs(x)<eps) return 0; else return x<0? -1:1; } struct Pt { double x,y; Pt(double x=0,double y=0) :x(x),y(y) {}; }; typedef Pt vec; vec operator - (Pt a,Pt b) { return vec(a.x-b.x,a.y-b.y); } vec operator + (vec a,vec b) { return vec(a.x+b.x,a.y+b.y); } bool operator == (Pt a,Pt b) { return dcmp(a.x-b.x)==0 && dcmp(a.y-b.y)==0; } bool operator < (const Pt& a,const Pt& b) { return a.x<b.x || (a.x==b.x && a.y<b.y); } vec rotate(vec a,double x) { return vec(a.x*cos(x)-a.y*sin(x),a.x*sin(x)+a.y*cos(x)); } double cross(vec a,vec b) { return a.x*b.y-a.y*b.x; } double dist(Pt a,Pt b) { return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y)); } vector<Pt> ConvexHull(vector<Pt> p) { sort(p.begin(),p.end()); p.erase(unique(p.begin(),p.end()),p.end()); int n=p.size() , m=0; vector<Pt> ch(n+1); for(int i=0;i<n;i++) { while(m>1 && cross(ch[m-1]-ch[m-2],p[i]-ch[m-2])<=0) m--; ch[m++]=p[i]; } int k=m; for(int i=n-2;i>=0;i--) { while(m>k && cross(ch[m-1]-ch[m-2],p[i]-ch[m-2])<=0) m--; ch[m++]=p[i]; } if(n>1) m--; ch.resize(m); return ch; }
半平面交:
//半平面交 const int N = 305; const double bond = 100001; const double eps = 1e-10; struct Pt { double x,y; Pt (double x=0,double y=0):x(x),y(y){} }; typedef Pt vec; vec operator + (Pt a,Pt b) { return vec(a.x+b.x,a.y+b.y); } vec operator - (Pt a,Pt b) { return vec(a.x-b.x,a.y-b.y); } vec operator * (Pt a,double p) { return vec(a.x*p,a.y*p); } double cross(Pt a,Pt b) { return a.x*b.y-a.y*b.x; } struct Line { Pt p; vec v; double ang; Line () {} Line (Pt p,vec v) :p(p),v(v){ ang=atan2(v.y,v.x); } bool operator < (const Line& rhs) const { return ang<rhs.ang; } }; bool onleft(Line L,Pt p) { return cross(L.v,p-L.p)>0; } Pt LineInter(Line a,Line b) { vec u=a.p-b.p; double t=cross(b.v,u)/cross(a.v,b.v); return a.p+a.v*t; } vector<Pt> HPI(vector<Line> L) { int n=L.size(); sort(L.begin(),L.end()); int f,r; vector<Pt> p(n) , ans; vector<Line> q(n); q[f=r=0]=L[0]; for(int i=1;i<n;i++) { while(f<r&&!onleft(L[i],p[r-1])) r--; while(f<r&&!onleft(L[i],p[f])) f++; q[++r]=L[i]; if(fabs(cross(q[r].v,q[r-1].v))<eps) { r--; if(onleft(q[r],L[i].p)) q[r]=L[i]; } if(f<r) p[r-1]=LineInter(q[r-1],q[r]); } while(f<r&&!onleft(q[f],p[r-1])) r--; if(r-f<=1) return ans; p[r]=LineInter(q[r],q[f]); for(int i=f;i<=r;i++) ans.push_back(p[i]); return ans; }
posted on 2016-04-05 11:21 hahalidaxin 阅读(3016) 评论(7) 编辑 收藏 举报