第七章 手写数字识别V3

# 优化:
# 1. 增加Modulist类,再次封装每层及forward和backward
# 2. 删除import matplotlib.pyplot as plt,暂时不需要画图;删去全局变量shuffle,在linear类实现
# 3. 增加__repr__魔数,可以快速查看每层大小
# 4. 暂时注释掉acc
# 导入必要的库
import numpy as np
import os
import struct


# 定义导入函数
def load_images(path):
    with open(path, "rb") as f:
        data = f.read()
    magic_number, num_items, rows, cols = struct.unpack(">iiii", data[:16])
    return np.asanyarray(bytearray(data[16:]), dtype=np.uint8).reshape(
        num_items, 28, 28
    )


def load_labels(file):
    with open(file, "rb") as f:
        data = f.read()
    return np.asanyarray(bytearray(data[8:]), dtype=np.int32)


# 定义sigmoid函数
def sigmoid(x):
    result = np.zeros_like(x)
    positive_mask = x >= 0
    result[positive_mask] = 1 / (1 + np.exp(-x[positive_mask]))
    negative_mask = x < 0
    exp_x = np.exp(x[negative_mask])
    result[negative_mask] = exp_x / (1 + exp_x)

    return result


# 定义softmax函数
def softmax(x):
    max_x = np.max(x, axis=-1, keepdims=True)
    x = x - max_x

    ex = np.exp(x)
    sum_ex = np.sum(ex, axis=1, keepdims=True)

    result = ex / sum_ex

    result = np.clip(result, 1e-10, 1e10)
    return result


# 定义独热编码函数
def make_onehot(labels, class_num):
    result = np.zeros((labels.shape[0], class_num))
    for idx, cls in enumerate(labels):
        result[idx, cls] = 1
    return result


# 定义dataset类
class Dataset:
    def __init__(self, all_images, all_labels):
        self.all_images = all_images
        self.all_labels = all_labels

    def __getitem__(self, index):
        image = self.all_images[index]
        label = self.all_labels[index]
        return image, label

    def __len__(self):
        return len(self.all_images)


# 定义dataloader类
class DataLoader:
    def __init__(self, dataset, batch_size, shuffle=True):
        self.dataset = dataset
        self.batch_size = batch_size
        self.shuffle = shuffle
        self.idx = np.arange(len(self.dataset))

    def __iter__(self):
        # 如果需要打乱,则在每个 epoch 开始时重新排列索引
        if self.shuffle:
            np.random.shuffle(self.idx)
        self.cursor = 0
        return self

    def __next__(self):
        if self.cursor >= len(self.dataset):
            raise StopIteration

        # 使用索引来获取数据
        batch_idx = self.idx[
            self.cursor : min(self.cursor + self.batch_size, len(self.dataset))
        ]

        batch_images = self.dataset.all_images[batch_idx]
        batch_labels = self.dataset.all_labels[batch_idx]

        self.cursor += self.batch_size
        return batch_images, batch_labels


# 定义linear类
class Linear:
    def __init__(self, in_features, out_features):
        self.info = f"Linear({in_features}, {out_features})"  # 打印信息
        self.w = np.random.normal(0, 1, size=(in_features, out_features))
        self.b = np.random.normal(0, 1, size=(1, out_features))

    def __repr__(self):
        return self.info

    def forward(self, x):
        self.x = x
        return np.dot(x, self.w) + self.b

    def backward(self, G):
        dw = np.dot(self.x.T, G)
        db = np.mean(G, axis=0, keepdims=True)

        self.w -= lr * dw
        self.b -= lr * db

        return np.dot(G, self.w.T)


# 定义Sigmoid类
class Sigmoid:
    def __init__(self):
        self.info = "Sigmoid()"  # 打印信息
        return self.info

    def __repr__(self):
        return self.info

    def forward(self, x):
        self.result = sigmoid(x)
        return self.result

    def backward(self, G):
        return G * self.result * (1 - self.result)


# 定义Tanh类
class Tanh:
    def __init__(self):
        self.info = "Tanh()"  # 打印信息

    def __repr__(self):
        return self.info

    def forward(self, x):
        self.result = 2 * sigmoid(2 * x) - 1
        return self.result

    def backward(self, G):
        return G * (1 - self.result**2)


# 定义Softmax类
class Softmax:
    def __init__(self):
        self.info = "Softmax()"  # 打印信息

    def __repr__(self):
        return self.info

    def forward(self, x):
        # p = softmax(H4)  # 输出层输出,使用softmax激活函数
        self.p = softmax(x)
        return self.p

    def backward(self, G):
        # G4 = G * H4 * (1 - H4)  # 第四层误差
        G = (self.p - G) / len(G)
        return G


# 定义ReLU类
class ReLU:
    def __init__(self):
        self.info = "ReLU()"  # 打印信息

    def __repr__(self):
        return self.info

    def forward(self, x):
        self.x = x
        return np.maximum(0, x)

    def backward(self, G):
        grad = G.copy()
        grad[self.x <= 0] = 0
        return grad


# 定义ModelList类
class ModelList:
    def __init__(self, layers):
        self.layers = layers

    def forward(self, x):
        for layer in self.layers:
            x = layer.forward(x)
        return x

    def backward(self, G):
        for layer in self.layers[::-1]:
            G = layer.backward(G)

    def __repr__(self):
        info = ""
        for layer in self.layers:
            info += layer.info + "\n"
        return info


# 主函数
if __name__ == "__main__":
    # 加载训练集图片、标签
    train_images = (
        load_images(
            os.path.join(
                "Python", "NLP basic", "data", "minist", "train-images.idx3-ubyte"
            )
        )
        / 255
    )
    train_labels = make_onehot(
        load_labels(
            os.path.join(
                "Python", "NLP basic", "data", "minist", "train-labels.idx1-ubyte"
            )
        ),
        10,
    )

    # 加载测试集图片、标签
    dev_images = (
        load_images(
            os.path.join(
                "Python", "NLP basic", "data", "minist", "t10k-images.idx3-ubyte"
            )
        )
        / 255
    )
    dev_labels = load_labels(
        os.path.join("Python", "NLP basic", "data", "minist", "t10k-labels.idx1-ubyte")
    )

    # 设置超参数
    epochs = 10
    lr = 0.08  # V2版本调整了学习率
    batch_size = 200

    # 展开图片数据
    train_images = train_images.reshape(60000, 784)
    dev_images = dev_images.reshape(-1, 784)

    # 调用dataset类和dataloader类
    train_dataset = Dataset(train_images, train_labels)
    train_dataloader = DataLoader(train_dataset, batch_size)

    dev_dataset = Dataset(dev_images, dev_labels)
    dev_dataloader = DataLoader(dev_dataset, batch_size)

    # 定义模型
    model = ModelList(
        [Linear(784, 512), ReLU(), Linear(512, 256), Tanh(), Linear(256, 10), Softmax()]
    )

    print(model)

    # 训练集训练过程
    for e in range(epochs):
        for x, l in train_dataloader:
            # 前向传播
            x = model.forward(x)

            # 计算损失
            loss = -np.mean(l * np.log(x))

            # 反向传播
            G = model.backward(l)

        # 验证集验证并输出预测准确率
        right_num = 0
        for x, batch_labels in dev_dataloader:
            x = model.forward(x)

            pre_idx = np.argmax(x, axis=-1)  # 预测类别
            right_num += np.sum(pre_idx == batch_labels)  # 统计正确个数

        acc = right_num / len(dev_images)  # 计算准确率
        # print(f"Epoch {e}, Acc: {acc:.4f}")

image

posted @ 2025-09-25 15:27  李大嘟嘟  阅读(7)  评论(0)    收藏  举报