学习笔记TF017:自然语言处理、RNN、LSTM
摘要:自然语言处理 (NLP)问题都是序列化的。前馈神经网络,在单次前馈中对到来数据处理,假定所有输入独立,模式丢失。循环神经网络(recurrent neural network,RNN)对时间显式建模神经网络。RNN神经元可接收其他神经元加权输入。RNN神经元可与更高层建立连接,也可与更低层建立连接。
阅读全文
学习笔记TF016:CNN实现、数据集、TFRecord、加载图像、模型、训练、调试
摘要:AlexNet(Alex Krizhevsky,ILSVRC2012冠军)适合做图像分类。层自左向右、自上向下读取,关联层分为一组,高度、宽度减小,深度增加。深度增加减少网络计算量。 训练模型数据集 Stanford计算机视觉站点Stanford Dogs http://vision.stanfor
阅读全文
学习笔记TF015:加载图像、图像格式、图像操作、颜色
摘要:TensorFlow支持JPG、PNG图像格式,RGB、RGBA颜色空间。图像用与图像尺寸相同(height*width*chnanel)张量表示。通道表示为包含每个通道颜色数量标量秩1张量。图像所有像素存在磁盘文件,需要被加载到内存。 图像加载与二进制文件相同。图像需要解码。输入生成器(tf.tr
阅读全文
学习笔记TF014:卷积层、激活函数、池化层、归一化层、高级层
摘要:CNN神经网络架构至少包含一个卷积层 (tf.nn.conv2d)。单层CNN检测边缘。图像识别分类,使用不同层类型支持卷积层,减少过拟合,加速训练过程,降低内存占用率。 TensorFlow加速所有不同类弄卷积层卷积运算。tf.nn.depthwise_conv2d,一个卷积层输出边接到另一个卷积
阅读全文
学习笔记TF013:卷积、跨度、边界填充、卷积核
摘要:卷积运算,两个输入张量(输入数据和卷积核)进行卷积,输出代表来自每个输入的信息张量。tf.nn.conv2d完成卷积运算。卷积核(kernel),权值、滤波器、卷积矩阵或模版,filter。权值训练习得。卷积核(filter参数)权值数量决定需要学习卷积核数量。通道,计算机器视觉,描述输出向量。RG
阅读全文
学习笔记TF012:卷积网络简述
摘要:ImageNet http://www.image-net.org ,图像标注信息数据库。每年举办大规模视觉识别挑战赛(ILSVRC)。基于ImageNet数据库构建完成目标自动检测分类任务系统。2012年,SuperVision提交卷积神经网络(CNN)。 CNN可用于任意类型数据张量(各分量与相
阅读全文
学习笔记TF011:多层神经网络
摘要:线性回归、对数几率回归模型,本质上是单个神经元。计算输入特征加权和。偏置视为每个样本输入特征为1权重,计算特征线性组合。激活(传递)函数 计算输出。线性回归,恒等式(值不变)。对数几率回归,sigmoid。输入->权重->求和->传递->输出。softmax分类含C个神经元,每个神经元对应一个输出类
阅读全文
学习笔记TF010:softmax分类
摘要:回答多选项问题,使用softmax函数,对数几率回归在多个可能不同值上的推广。函数返回值是C个分量的概率向量,每个分量对应一个输出类别概率。分量为概率,C个分量和始终为1。每个样本必须属于某个输出类别,所有可能样本均被覆盖。分量和小于1,存在隐藏类别;分量和大于1,每个样本可能同时属于多个类别。类别
阅读全文
学习笔记TF009:对数几率回归
摘要:logistic函数,也称sigmoid函数,概率分布函数。给定特定输入,计算输出"success"的概率,对回题回答"Yes"的概率。接受单个输入。多维数据或训练集样本特征,可以用线性回归模型表达式合并成单值。
阅读全文