常用软件配置
1. ubuntu源设置
1.1 设置中选择源
setting -> software&updates -> other -> china
2. pip源设置
2.1 指定安装源
pip install 要安装的包 -i https://pypi.tuna.tsinghua.edu.cn/simple
pypi 清华大学源:https://pypi.tuna.tsinghua.edu.cn/simple pypi 豆瓣源 :http://pypi.douban.com/simple/ pypi 腾讯源:http://mirrors.cloud.tencent.com/pypi/simple pypi 阿里源:https://mirrors.aliyun.com/pypi/simple/ pypi 默认官方源: https://pypi.org/simple
2.2 可以把清华源设置为默认源(首先要把pip升级到10以上)
pip install pip -U pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
3. git本地账户设置
3.1 设置git用户名/邮箱
git config --global user.name [username] git config --global user.email [email]
3.2 保存信息,避免每次输入
echo "[credential]" >> .git/config echo " helper = store" >> .git/config
4. 安装特定版本的python
4.1 安装python3.7
wget http://www.python.org/ftp/python/3.7.1/Python-3.7.1.tgz tar -xvzf Python-3.7.1.tgz cd Python-3.7.1 ./configure --with-ssl make sudo make install PATH=$PATH:$HOME/bin:/usr/local/python3.7.1/bin
4.2 修改软连接
mv /usr/bin/python /usr/bin/python.bak ln -s /usr/local/bin/python3.7 /usr/bin/python mv /usr/bin/pip /usr/bin/pip.bak ln -s /usr/local/bin/pip3 /usr/bin/pip
4.3 相关错误
Q1: 报ssl module in Python is not available
的错误
A: https://blog.csdn.net/zr1076311296/article/details/75136612
Q2: 报zipimport.ZipImportError: can’t decompress data; zlib not available in Linux
A: sudo apt-get install zlib*
Q3: sqlite
A: 参考:https://www.jianshu.com/p/dd4532457b9f
5. Docker
5.1 错误
- Q:
Error response from daemon: Get https://registry-1.docker.io/v2/ ... read: connection refused
- A: CSDN资料
- A: 简书资料
5.2 pull镜像修改,加快下载速度
在/etc/docker/daemon.json
文件中添加下面参数,此处使用的是中国科技大学的docker镜像源
{ "registry-mirrors" : ["https://docker.mirrors.ustc.edu.cn"], "runtimes": { "nvidia": { "path": "nvidia-container-runtime", "runtimeArgs": [] } } }
6. 安装tensorflow_GPU版,需要NVIDIA+CUDA+cuDNN
6.1 安装的是TensorFlow2,与安装TensorFlow1.x有差别
TensorFlow相应版本对应的CUDA和cuDNN,页面底部
#版本:tensorflow=2.1.0 CUDA=10.1.243-1 cuDNN=7.6.5.32-1+cuda10.1 # Add NVIDIA package repositories # Add HTTPS support for apt-key $ sudo apt-get install gnupg-curl $ wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/cuda-repo-ubuntu1604_10.1.243-1_amd64.deb $ sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.pub $ sudo dpkg -i cuda-repo-ubuntu1604_10.1.243-1_amd64.deb $ sudo apt-get update $ wget http://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1604/x86_64/nvidia-machine-learning-repo-ubuntu1604_1.0.0-1_amd64.deb $ sudo apt install ./nvidia-machine-learning-repo-ubuntu1604_1.0.0-1_amd64.deb $ sudo apt-get update # Issue with driver install requires creating /usr/lib/nvidia sudo mkdir /usr/lib/nvidia # Install NVIDIA driver 安装cuda时会自动安装适合自己的NVIDIA驱动 # Install development and runtime libraries (~4GB) sudo apt-get install --no-install-recommends \ cuda-10-1 \ libcudnn7=7.6.5.32-1+cuda10.1 \ libcudnn7-dev=7.6.5.32-1+cuda10.1 # Reboot. Check that GPUs are visible using the command: nvidia-smi # Install TensorRT. Requires that libcudnn7 is installed above. sudo apt-get install -y --no-install-recommends \ libnvinfer6=6.0.1-1+cuda10.1 \ libnvinfer-dev=6.0.1-1+cuda10.1 \ libnvinfer-plugin6=6.0.1-1+cuda10.1 #查看已经暗转的cuda和NVIDIA $ sudo dpkg -l |grep cuda $ sudo lspci | grep -i nvidia
6.2 安装的是TensorFlow相关
TensorFlow相应版本对应的CUDA和cuDNN,页面底部
#版本:tensorflow=1.14.0 CUDA=10.0.130-1 cuDNN=7.4.1.5 TensorRT=5.1.5-1+cuda10.0 # Add NVIDIA package repositories # Add HTTPS support for apt-key $ sudo apt-get install gnupg-curl $ wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/cuda-repo-ubuntu1604_10.0.130-1_amd64.deb $ sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.pub $ sudo dpkg -i cuda-repo-ubuntu1604_10.0.130-1_amd64.deb $ sudo apt-get update $ wget http://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1604/x86_64/nvidia-machine-learning-repo-ubuntu1604_1.0.0-1_amd64.deb $ sudo apt install ./nvidia-machine-learning-repo-ubuntu1604_1.0.0-1_amd64.deb $ sudo apt-get update # Issue with driver install requires creating /usr/lib/nvidia sudo mkdir /usr/lib/nvidia # Install NVIDIA driver 安装cuda时会自动安装适合自己的NVIDIA驱动 # Install development and runtime libraries (~4GB) sudo apt-get install --no-install-recommends \ cuda-10-0 \ libcudnn7=7.4.1.5-1+cuda10.0 \ libcudnn7-dev=7.4.1.5-1+cuda10.0 # Reboot. Check that GPUs are visible using the command: nvidia-smi # Install TensorRT. Requires that libcudnn7 is installed above. sudo apt-get install -y --no-install-recommends \ libnvinfer5=5.1.5-1+cuda10.0 \ libnvinfer-dev=5.1.5-1+cuda10.0 \ #libnvinfer5_5.1.5-1+cuda10.0_amd64.deb
6.2 测试tensorflow GPU版是否安装成功
$ import tensorflow as tf $ tf.test.is_gpu_available()
6.3 tensorflow不能使用GPU提示:
W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libnvinfer.so.6'; dlerror: libcublasLt.so.10: cannot open shared object file: No such file or directory; W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libnvinfer_plugin.so.6'; dlerror: libcublasLt.so.10: cannot open shared object file: No such file or directory; W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:30] Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
# 经过搜索发现libnvinfer.so.6 位于/usr/lib/x86_64-linux-gnu/ libcublasLt.so.10位于/usr/local/cuda-10.2/targets/x86_64-linux/lib/lib $ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda/extras/CUPTI/lib64 $ sudo cp /usr/lib/x86_64-linux-gnu/libnvinfer* /usr/local/cuda/targets/x86_64-linux/lib $ sudo cp /usr/local/cuda-10.2/targets/x86_64-linux/lib/lib* /usr/local/cuda/targets/x86_64-linux/lib
7. 键鼠共享
安家的参考博客
【推荐】博客园的心动:当一群程序员决定开源共建一个真诚相亲平台
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】Flutter适配HarmonyOS 5知识地图,实战解析+高频避坑指南
【推荐】开源 Linux 服务器运维管理面板 1Panel V2 版本正式发布
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 为什么说方法的参数最好不要超过4个?
· C#.Net 筑基-优雅 LINQ 的查询艺术
· 一个自认为理想主义者的程序员,写了5年公众号、博客的初衷
· 大数据高并发核心场景实战,数据持久化之冷热分离
· 运维排查 | SaltStack 远程命令执行中文乱码问题
· C#.Net筑基-优雅LINQ的查询艺术
· 博客园众包平台:诚征3D影像景深延拓实时处理方案(预算8-15万)
· Cursor生成UI,加一步封神
· 为什么说方法的参数最好不要超过4个?
· 一个基于 .NET 8 开源免费、高性能、低占用的博客系统