系统综合实验第四次作业

一、使用Docker-compose实现Tomcat+Nginx负载均衡

(1)nginx反向代理原理

客户端对代理是无感知的,客户端不需要任何配置就可以访问,客户端将请求发送到反向代理服务器,由反向代理服务器去选择目标服务器获取数据后,在返回给客户端,此时反向代理服务器和目标服务器对外就是一个服务器,暴露的是代理服务器地址,隐藏了真实服务器IP地址。

(2)nginx代理tomcat集群

  • 文件结构
├── default.conf
├── docker-compose.yml
├── nginx [error opening dir]
├── tomcat1
│   └── index.html
├── tomcat2
│   └── index.html
└── tomcat3
    └── index.html

  • docker-compose.yml
version: "3"
services:
    nginx:
        image: nginx
        container_name: "nginx-tomcat"
        ports:
            - 80:8085
        volumes:
            - ./nginx/default.conf:/etc/nginx/conf.d/default.conf # 挂载配置文件
        depends_on:
            - tomcat01
            - tomcat02
            - tomcat03

    tomcat01:
        image: tomcat
        container_name: "tomcat01"
        volumes:
            - ./tomcat1:/usr/local/tomcat/webapps/ROOT # 挂载web目录

    tomcat02:
        image: tomcat
        container_name: "tomcat02"
        volumes:
            - ./tomcat2:/usr/local/tomcat/webapps/ROOT

    tomcat03:
        image: tomcat
        container_name: "tomcat03"
        volumes:
            - ./tomcat3:/usr/local/tomcat/webapps/ROOT
  • default.conf
upstream tomcats {
    server tomcat01:8080;
    server tomcat02:8080; 
    server tomcat03:8080; 
}

server {
    listen 8085;
    server_name localhost;

    location / {
        proxy_pass http://tomcats; # 请求转向tomcats
    }
}

写好配置后docker-compose up -d即可访问localhost

(3)nginx的负载均衡策略

  • 轮询策略测试负载均衡
  • 权重策略测试负载均衡
    先修改default.conf
upstream tomcats {
    server tomcat01:8080; #默认weight=1
    server tomcat02:8080 ; 
    server tomcat03:8080 weight=3; 
}

server {
    listen 8085;
    server_name localhost;

    location / {
        proxy_pass http://tomcats; # 请求转向tomcats
    }
}

这里修改完一定要重启容器,不然策略不会改变。。。很难受

由于03的权重比较大,所以出现的频率比较大

二、使用Docker-compose部署javaweb运行环境

(1)文件结构

├── docker-compose.yml
├── default.conf
├── docker-entrypoint.sh
├── grogshop.sql
├── Dockerfile
└── webapps
    ├── docs
    ├── examples
    ├── host-manager
    ├── manager
    ├── ROOT
    ├── ssmgrogshop_war
    └── ssmgrogshop_war.war
  • docker-compose.yml
version: "3"   #版本
services:     #服务节点
  tomcat00:     #tomcat 服务
    image: tomcat    #镜像
    hostname: hostname       #容器的主机名
    container_name: tomcat00   #容器名
    ports:      #端口
     - "5050:8080"
    volumes:  #数据卷
     - "./webapps:/usr/local/tomcat/webapps"
     - ./wait-for-it.sh:/wait-for-it.sh
    networks:   #网络设置静态IP
      webnet:
        ipv4_address: 15.22.0.15
  tomcat01:     #tomcat 服务
    image: tomcat    #镜像
    hostname: hostname       #容器的主机名
    container_name: tomcat01   #容器名
    ports:      #端口
     - "5055:8080"
    volumes:  #数据卷
     - "./webapps:/usr/local/tomcat/webapps"
     - ./wait-for-it.sh:/wait-for-it.sh
    networks:   #网络设置静态IP
      webnet:
        ipv4_address: 15.22.0.16
  mymysql:  #mymysql服务
    build: .   #通过MySQL的Dockerfile文件构建MySQL
    image: mymysql:test
    container_name: mymysql
    ports:
      - "3309:3306" 
#红色的外部访问端口不修改的情况下,要把Linux的MySQL服务停掉
#service mysql stop
#反之,将3306换成其它的
    command: [
            '--character-set-server=utf8mb4',
            '--collation-server=utf8mb4_unicode_ci'
    ]
    environment:
      MYSQL_ROOT_PASSWORD: "123456"
    networks:
      webnet:
        ipv4_address: 15.22.0.6
  nginx:
      image: nginx
      container_name: "nginx-tomcat"
      ports:
          - 8080:8080
      volumes:
          - ./default.conf:/etc/nginx/conf.d/default.conf # 挂载配置文件
      tty: true
      stdin_open: true
      depends_on:
          - tomcat00
          - tomcat01
      networks:
       webnet:
        ipv4_address: 15.22.0.7
networks:   #网络设置
 webnet:
   driver: bridge  #网桥模式
   ipam:
     config:
      - 
       subnet: 15.22.0.0/24   #子网
  • docker-entrypoint.sh
#!/bin/bash
mysql -uroot -p123456 << EOF    #  << EOF 必须要有
source /usr/local/grogshop.sql;
  • Dockerfile
#  这个是构建MySQL的dockerfile
FROM registry.saas.hand-china.com/tools/mysql:5.7.17
# mysql的工作位置
ENV WORK_PATH /usr/local/
# 定义会被容器自动执行的目录
ENV AUTO_RUN_DIR /docker-entrypoint-initdb.d
#复制gropshop.sql到/usr/local 
COPY grogshop.sql  /usr/local/
#把要执行的shell文件放到/docker-entrypoint-initdb.d/目录下,容器会自动执行这个shell
COPY docker-entrypoint.sh  $AUTO_RUN_DIR/
#给执行文件增加可执行权限
RUN chmod a+x $AUTO_RUN_DIR/docker-entrypoint.sh
# 设置容器启动时执行的命令
#CMD ["sh", "/docker-entrypoint-initdb.d/import.sh"]
  • default.conf
upstream tomcat123 {
    server tomcat00:8080;
    server tomcat01:8080;
}

server {
    listen 8080;
    server_name localhost;

    location / {
        proxy_pass http://tomcat123;
    }
}

(2)修改连接数据库的IP

vim ~/javaweb1/webapps/ssmgrogshop_war/WEB-INF/classes/jdbc.properties

(3)启动容器,浏览器访问页面

sudo docker-compose up -d
http://主机ip地址:8080/ssmgrogshop_war

(4)测试两个tomcat服务器负载均衡

http://主机ip地址:8080/ssmgrogshop_war

http://主机ip地址:5050/ssmgrogshop_war

(5)在前端页面进行数据库操作





三、使用Docker搭建大数据集群环境

(1)搭建hadoop环境

  • 文件结构
├── Dockerfile
├── build
│   └── hadoop-3.1.3.tar.gz
└── sources.list
  • Dockerfile
#Base images 基础镜像
FROM ubuntu:18.04

#MAINTAINER 维护者信息
MAINTAINER lhw

COPY ./sources.list /etc/apt/sources.list
  • source.list
# 默认注释了源码镜像以提高 apt update 速度,如有需要可自行取消注释
deb http://mirrors.tuna.tsinghua.edu.cn/ubuntu/ focal main restricted universe multiverse
# deb-src http://mirrors.tuna.tsinghua.edu.cn/ubuntu/ focal main restricted universe multiverse
deb http://mirrors.tuna.tsinghua.edu.cn/ubuntu/ focal-updates main restricted universe multiverse
# deb-src http://mirrors.tuna.tsinghua.edu.cn/ubuntu/ focal-updates main restricted universe multiverse
deb http://mirrors.tuna.tsinghua.edu.cn/ubuntu/ focal-backports main restricted universe multiverse
# deb-src http://mirrors.tuna.tsinghua.edu.cn/ubuntu/ focal-backports main restricted universe multiverse
deb http://mirrors.tuna.tsinghua.edu.cn/ubuntu/ focal-security main restricted universe multiverse
# deb-src http://mirrors.tuna.tsinghua.edu.cn/ubuntu/ focal-security main restricted universe multiverse
# 预发布软件源,不建议启用
# deb http://mirrors.tuna.tsinghua.edu.cn/ubuntu/ focal-proposed main restricted universe multiverse
# deb-src http://mirrors.tuna.tsinghua.edu.cn/ubuntu/ focal-proposed main restricted universe multiverse

创建并运行容器

docker build -t ubuntu:18.04 .
docker run -it --name ubuntu ubuntu:18.04

(2)容器初始化

安装必要工具

apt-get update
apt-get install vim # 用于修改配置文件
apt-get install ssh # 分布式hadoop通过ssh连接
/etc/init.d/ssh start # 开启sshd服务器
vim ~/.bashrc # 在文件末尾添加/etc/init.d/ssh start,实现ssd开机自启

实现ssh无密码登陆

ssh-keygen -t rsa # 一直按回车即可
cd ~/.ssh
cat id_rsa.pub >> authorized_keys

安装jdk,Hadoop

apt-get install openjdk-8-jdk

docker cp ./build/hadoop-3.1.3.tar.gz 容器ID:/root/hadoop-3.1.3.tar.gz
cd /root
tar -zxvf hadoop-3.1.3.tar.gz -C /usr/local

配置环境

vim ~/.bashrc # 在文件末尾添加以下五行,配置Java、hadoop环境变量:

export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64/
export PATH=$PATH:$JAVA_HOME/bin
export HADOOP_HOME=/usr/local/hadoop-3.1.3
export CLASSPATH=.:$JAVA_HOME/lib:$JRE_HOME/lib
export PATH=$PATH:$HADOOP_HOME/sbin:$HADOOP_HOME/bin:$JAVA_HOME/bin

source ~/.bashrc # 使.bashrc生效

验证安装是否成功

java -version
hadoop version

(3)配置hadoop集群

cd /usr/local/hadoop-3.1.3/etc/hadoop

vim hadoop-env.sh
vim core-site.xml
vim hdfs-site.xml
vim mapred-site.xml
vim yarn-site.xml
  • hadoop-env.sh
export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64/ # 在任意位置添加
  • core-site.xml
<configuration>
          <property> 
                  <name>hadoop.tmp.dir</name>
                  <value>file:/usr/local/hadoop-3.1.3/tmp</value>
                  <description>Abase for other temporary directories.</description>
          </property>
          <property>
                  <name>fs.defaultFS</name>
                  <value>hdfs://master:9000</value>
          </property>
</configuration>
  • hdfs-site.xml
<configuration>
        <property>
                <name>dfs.replication</name>
                <value>1</value>
        </property>
        <property>
                <name>dfs.namenode.name.dir</name>
		        <value>file:/usr/local/hadoop-3.1.3/tmp/dfs/name</value>
	</property>
	<property>
                <name>dfs.datanode.data.dir</name>
                <value>file:/usr/local/hadoop-3.1.3/tmp/dfs/data</value>
	</property>
	<property>
                <name>dfs.permissions.enabled</name>
                <value>false</value>
        </property>
</configuration>
  • mapred-site.xml
<configuration>
    <property>
        <name>mapreduce.framework.name</name>
        <value>yarn</value>
    </property>
    <property>
        <name>yarn.app.mapreduce.am.env</name>
        <value>HADOOP_MAPRED_HOME=/usr/local/hadoop-3.1.3</value>
    </property>
    <property>
        <name>mapreduce.map.env</name>
        <value>HADOOP_MAPRED_HOME=/usr/local/hadoop-3.1.3</value>
    </property>
    <property>
        <name>mapreduce.reduce.env</name>
        <value>HADOOP_MAPRED_HOME=/usr/local/hadoop-3.1.3</value>
    </property>
</configuration>
  • yarn-site.xml
<configuration>
<!-- Site specific YARN configuration properties -->
        <property>
               <name>yarn.nodemanager.aux-services</name>
               <value>mapreduce_shuffle</value>
        </property>
        <property>
               <name>yarn.resourcemanager.hostname</name>
               <value>Master</value>
        </property>
        <!--虚拟内存和物理内存比,不加这个模块程序可能跑不起来-->
        <property>
               <name>yarn.nodemanager.vmem-pmem-ratio</name>
               <value>2.5</value>
        </property>
</configuration>
  • 进入脚本目录
cd /usr/local/hadoop-3.1.3/sbin
  • 对于start-dfs.sh和stop-dfs.sh文件,添加下列参数
HDFS_DATANODE_USER=root
HADOOP_SECURE_DN_USER=hdfs
HDFS_NAMENODE_USER=root
HDFS_SECONDARYNAMENODE_USER=root
  • 对于start-yarn.sh和stop-yarn.sh,添加下列参数
YARN_RESOURCEMANAGER_USER=root
HADOOP_SECURE_DN_USER=yarn
YARN_NODEMANAGER_USER=root

(4)构建镜像并运行主机

docker commit 容器ID ubuntu/hadoop 

# 第一个终端
docker run -it -h master --name master ubuntu/hadoop
# 第二个终端
docker run -it -h slave01 --name slave01 ubuntu/hadoop
# 第三个终端
docker run -it -h slave02 --name slave02 ubuntu/hadoop

  • 修改/etc/hosts
172.17.0.2      master
172.17.0.3      slave01
172.17.0.4      slave02
  • 测试ssh

  • master主机上修改workers
vim /usr/local/hadoop-3.1.3/etc/hadoop/workers

slave01
slave02
  • 开启服务
start-dfs.sh
start-yarn.sh

jps查看

(6)运行hadoop示例程序

hdfs namenode -format # 格式化文件系统
sbin/start-all.sh              #启动所有服务
  • grep测试
hdfs dfs -mkdir -p /user/root/input    #新建input文件夹
hdfs dfs -put /usr/local/hadoop-3.1.3/etc/hadoop/*s-site.xml input  #将部分文件放入input文件夹
hadoop jar /usr/local/hadoop-3.1.3/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.3.jar grep input output 'dfs[a-z.]+'    #运行示例程序grep
hdfs dfs -cat output/*   #查看运行结果
  • wordcount测试
hdfs dfs -rm root     #删除上一次运行的输入和输出
hdfs dfs -mkdir -p /user/root/input    #新建input文件夹
vim txt1.txt   #在当前目录下新建txt1.txt
vim txt2.txt   #在当前目录下新建txt2.txt
hdfs dfs -put ./*.txt input  #将新建的文本文件放入input文件夹
hadoop jar /usr/local/hadoop-3.1.3/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.3.jar wordcount input output   #运行示例程序wordcount
hdfs dfs -cat output/*   #查看运行结果

(4)实验报告

发表一篇博客,记录主要的过程,无需每个步骤一一截图;
提交可以运行的相关配置文件以及测试程序包;
记录实验过程的主要问题和解决方法,分享经验和感想;
记录完成作业所花的时间。

posted @ 2020-05-18 13:44  牧分丶  阅读(167)  评论(0编辑  收藏  举报