随笔分类 -  学习笔记

摘要:\(Prufer\) 序列 $\texttt \(Prufer\) 序列序列可以将一个带标号 \(n\) 个结点的树用 \([1..n]\) 中的 \(n-2\) 个整数表示。你也可以把它理解为完全图的生成树与数列之间的双射。 显然你不会想不开拿这玩意儿去维护树结构。这玩意儿常用组合计数问题上。 $ 阅读全文
posted @ 2020-07-26 21:09 leiyuanze 阅读(359) 评论(0) 推荐(0)
摘要:李超树 它本质上是线段树的拓展运用 解决的问题:平面直角坐标系中,支持插入线段,问 \(x = x_0\) 这条直线上最大的 \(y\) 值 它维护的东西很奇特:优势线段 何为“优势线段”? 给定两条线在指定区间内,所有 \(x\) 对应的两个 \(y\) 高的数量越多的就是优势线段 如下 蓝线便是 阅读全文
posted @ 2020-07-24 20:35 leiyuanze 阅读(197) 评论(0) 推荐(0)
摘要:\(Miller-Rabin\) \(Miller-Rabin\) 用于判定一个大整数是不是素数,且速度非常快 应该是 \(O(klog^3n)\),其中 \(k\) 为测试的次数,\(n\) 为要判定的数 算法本质上是一种概率算法,存在误判的可能性,但是出错的概率非常小。出错的概率到底是多少,存在 阅读全文
posted @ 2020-07-16 22:01 leiyuanze 阅读(456) 评论(0) 推荐(0)
摘要:本章学习斜率优化建图 请放心食用 引言 最小生成树($mst$) ($Algorithm: \text {Prim or Kruskal}$) 从裸题到一丁点技巧,再到丧心病狂的神仙题 原始时间复杂度 $O(N^2)$ 与 $O(M log M)$ 永远的 $TLE$ ······ 正话 本文第一句 阅读全文
posted @ 2020-02-12 16:07 leiyuanze 阅读(318) 评论(0) 推荐(0)
摘要:在 \(DP\) 的世界里 有一种题需要单调队列优化 \(DP\) 一般在此时,\(f_i\) 和它的决策集合 \(f_j\) 在转移时 \(i\) 不和 \(j\) 粘在一起(即所有的 \(j\) 转移到 $i$时 关于$j$ 的部分全都与 $i$无关), 果真如此,我们就可以用单调队列优化,留下 阅读全文
posted @ 2020-02-06 16:40 leiyuanze 阅读(299) 评论(1) 推荐(1)