03 2016 档案

摘要:这一个部分都将只涉及到选择特征的某个子集的方法,将高纬度的特征空间映射到低维度空间的方法(如PCA)都不会涉及到。 一. 单变量 优点:运算速度快,独立于分类器 缺点:忽略的特征之间的联系,忽略了与分类器的联系(在训练模型的时候不能调参来提高性能) 1. 卡方检验 主要内容参考来自 http://b 阅读全文
posted @ 2016-03-28 17:30 Yuki_i 阅读(595) 评论(0) 推荐(0)
摘要:1. ELM 是什么 ELM的个人理解: 单隐层的前馈人工神经网络,特别之处在于训练权值的算法: 在单隐层的前馈神经网络中,输入层到隐藏层的权值根据某种分布随机赋予,当我们有了输入层到隐藏层的权值之后,可以根据最小二乘法得到隐藏层到输出层的权值,这也就是ELM的训练模型过程。 与BP算法不同,BP算 阅读全文
posted @ 2016-03-25 17:15 Yuki_i 阅读(18531) 评论(2) 推荐(2)