gym102586 部分题解


link
出于某种原因,本篇博客不提供代码。


Evacuation

考虑设 \(f(l,r,x)\) 表示当前询问区间为 \([l,r]\)\(S\) 个人都访问 \(x\) 时候的答案。
显然是先枚举距离填满帐篷,然后如果距离枚举到 \(\min{x-l-1,r+1-x}\) 还没放置完所有人,就全部跑到 \(l-1/r+1\) 去避难。
发现最后当 \(x\in[l,mid]\) 的时候到 \(l-1\) 避难,当 \(x\in[mid+1,r]\) 的时候到 \(r+1\) 避难。
这样的话,当 \(x\in[l,mid]\) 的时候,最小代价跟 \(r\) 没有关系,在 \([mid+1,r]\) 的时候同理。
设这个代价是 \(f_{left}[l,x]\),我们要求 \(\max_{x=l}^{mid}{f_{left}[l,x]}\)
这个问单个 \(x\) 可以通过预处理前缀和做到 \(O(1)\),现在已经有了 \(O(n^2)\) 的做法简直和暴力一样优秀,显然过不去。
但容易发现它满足决策单调性,于是搞一个线段树+分治优化决策即可。


Sum Modulo

编了一年才知道哪里写假了...
发现有递推式 \(f_m=\sum\limits_{i=1}^nf_{m-i}a_i+1\),然后可以线性递推出 \(f_{M+1}...f_{M+n-1}\) 关于 \(f_{1},f_{2}...f_{n-1}\) 的线性表示。
高斯消元解出 \(f_{1}...f_{n-1}\) 然后再跑一次线性递推。


Count Modulo 2

\(f(x)=\sum\limits_{i=1}^nx^{a_i}\),发现是求 \([x^s]f(x)^n\mod2\),然后会发现 \(f(x)^{2^i}\equiv \sum\limits_{j=1}^nx^{a_j2^i}\mod2\),然后压位 dp 一下就完事了。
多测不清空,爆零两行泪。


Robots

这个东西显然有下界是 \(\sum\limits_{i=1}^n|a_i-b_i|\), 然后开动脑筋构造出一个符合条件的方案即可。


Construct Points

随便构造一组斜率相近的直线。


Amidakuji

发现题目中有个 \(\log\) 就开始想二进制构造。
首先发现 \(\sum\limits_{i=0}^{?}\pm2^i\) 是可以凑出所有在上界内的偶数的。
然后这道题里面把置换环的边看成无向边就非常好构造。
所以如果 \(n\) 是奇数,我们的第 \(i\) 个置换搞成 \(x\rightarrow x+2^i\mod n\),这样在模意义下可以凑出任意值。
现在考虑 \(n\) 是偶数的情况怎么修。
发现在所有操作完之后会改变奇偶性,于是需要建立一个置换,使得奇数能变成奇数/偶数,偶数也是。
考虑每 \(4\) 个分一组,连边 \(x\rightarrow x+2\rightarrow x+3\rightarrow x+1\rightarrow x\)
这样就能搞定 \(4|n\) 的情况。
\(n\equiv2\mod 4\) 的时候,最后两个没法搞定,我们再随便建一个新的置换上去即可,比如对于前 \(n-4\) 个有 \(x\rightarrow x\),最后四个跟刚刚一样构造。


Yosupo's Algorithm

直接暴力枚举点对算贡献不是非常优秀,考虑优化枚举的点对数。
显然能想到关于 \(y\) 坐标进行分治。
经过简单分类讨论容易发现如果该点对有用,那么一定至少有一个点的权值在当前范围内该颜色点中是最大的,于是总点对数是 \(O(n\log n)\) 的。
扫描线即可。

posted @ 2020-06-03 21:54  soroboruo  阅读(821)  评论(0编辑  收藏  举报