bzoj3456:城市规划

传送门

感觉这个题是真的神仙啊,思路是真的难想

首先设\(f(i)\)\(i\)个点的无向连通图个数,然后设\(g(i)\)\(i\)个点的图的个数(注意,此处不一定联通)

那么我们考虑枚举\(1\)号点所在的联通块的大小

显然有
\[ g(n)=\sum_{i=1}^nf(i)\binom{n-1}{i-1}g(n-i)\\ \]
考虑到
\[ g(n)=2^{\binom{n}{2}}\\ \]
所以有
\[ \sum_{i=1}^{n}f(i)\binom{n-1}{i-1}2^{\binom{n-i}{2}}=2^{\binom{n}{2}}\\ \]
后面的应该就很好推了,这个题主要的难点是考虑枚举\(1\)所在的联通块大小

后面还是套路,把组合数拆开
\[ \sum_{i=1}^nf(i)\frac{(n-1)!}{(n-i)!(i-1)!}2^{\binom{n-i}{2}}=2^{\binom{n}{2}}\\ \]
把相同项移到一起去
\[ \sum_{i=1}^n\frac{f(i)}{(i-1)!}\frac{2^{\binom{n-i}{2}}}{(n-i)!}=\frac{2^{\binom{n}{2}}}{(n-1)!}\\ \]
这个式子已经很眼熟了,再设
\[ A(x)=\sum_{i=0}\frac{f(i)}{(i-1)!}x^i\\ B(x)=\sum_{i=0}\frac{2^{\binom{i}{2}}}{i!}x^i\\ C(x)=\sum_{i=0}\frac{2^{\binom{i}{2}}}{(i-1)!}x^i\\ \]
很显然有
\[ C(x)=A(x)B(x)\\ A(x)=C(x)B(x)^{-1} \]

然后就可以多项式求逆+NTT了

代码:

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<iostream>
#include<queue>
#include<cmath>
using namespace std;
void read(int &x){
    char ch;bool ok;
    for(ok=0,ch=getchar();!isdigit(ch);ch=getchar())if(ch=='-')ok=1;
    for(x=0;isdigit(ch);x=x*10+ch-'0',ch=getchar());if(ok)x=-x;
}
#define rg register
const int maxn=4e5+10,mod=1004535809,g=3,gi=334845270,modd=mod-1;
int n,a[maxn],b[maxn],c[maxn],m,fac[maxn],inv[maxn],len,ans,r[maxn],mx;
int mul(int x,int y){return 1ll*x*y-1ll*x*y/mod*mod;}
int add(int x,int y){return x+y>=mod?x+y-mod:x+y;}
int del(int x,int y){return x-y<0?x-y+mod:x-y;}
int mi(int a,int b){
    int ans=1;
    while(b){
        if(b&1)ans=mul(ans,a);
        b>>=1,a=mul(a,a);
    }
    return ans;
}
void ntt(int *a,int n,int f){
    for(rg int i=0;i<n;i++)if(r[i]>i)swap(a[i],a[r[i]]);
    for(rg int i=1;i<n;i<<=1){
        int wn=mi(f?g:gi,(mod-1)/(i<<1));
        for(rg int j=0;j<n;j+=i<<1){
            int w=1;
            for(rg int k=0;k<i;k++){
                int x=a[j+k],y=mul(w,a[i+j+k]);
                a[j+k]=add(x,y),a[j+k+i]=del(x,y),w=mul(w,wn);
            }
        }
    }
    if(f)return ;int inv=mi(n,mod-2);
    for(rg int i=0;i<n;i++)a[i]=mul(a[i],inv);
}
void get_inv(int *b,int n){
    if(n==1)return b[0]=mi(a[0],mod-2),void();
    get_inv(b,(n+1)>>1);
    m=n;len=0;
    for(n=1;n<=m<<1;n<<=1)len++;
    for(rg int i=0;i<n;i++)r[i]=(r[i>>1]>>1)|((i&1)<<(len-1));
    for(rg int i=0;i<n;i++)c[i]=a[i];
    for(rg int i=m;i<n;i++)c[i]=0;
    ntt(b,n,1),ntt(c,n,1);
    for(rg int i=0;i<n;i++)b[i]=del(mul(2,b[i]),mul(mul(c[i],b[i]),b[i]));
    ntt(b,n,0);
    for(rg int i=m;i<n;i++)b[i]=0;
}
int main(){
    read(n);fac[0]=inv[0]=1;
    for(rg int i=1;i<=n;i++)fac[i]=mul(fac[i-1],i);
    inv[n]=mi(fac[n],mod-2);
    for(rg int i=n-1;i;i--)inv[i]=mul(inv[i+1],i+1);
    for(rg int i=0;i<=n;i++)a[i]=mul(mi(2,1ll*i*(i-1)/2%modd),inv[i]);
    get_inv(b,n);n++;
    for(rg int i=1;i<n;i++)c[i]=mul(mi(2,1ll*i*(i-1)/2%modd),inv[i-1]);
    m=n;len=0;
    for(n=1;n<=m<<1;n<<=1)len++;
    for(rg int i=0;i<n;i++)r[i]=(r[i>>1]>>1)|((i&1)<<(len-1));
    ntt(b,n,1),ntt(c,n,1);
    for(rg int i=0;i<n;i++)b[i]=mul(b[i],c[i]);
    ntt(b,n,0);
    printf("%d\n",mul(b[m-1],fac[m-2]));
}
posted @ 2019-04-25 13:31 蒟蒻--lichenxi 阅读(...) 评论(...) 编辑 收藏