PyTorch 神经网络学习(官方教程中文版)(二、利用Pytorch搭建图像分类器)

pytorch的官方教程https://pytorch123.com/

训练一个图像分类器的步骤如下所示:

 

 

 需要加入的库函数:

import torch
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim

训练集和测试集通过torchvision加载,

# 先将数据转为Tensor,然后进行归一标准化,原图片为三通道,共三组数,前为mean,后为std
transform = transforms.Compose(
    [transforms.ToTensor(),
     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])  
# train的True or False 决定载入的是训练集还是测试集,download的True or False决定是否下载CIFAR10
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
                                        download=True, transform=transform)
# Dataset是一个包装类,用来将数据包装为Dataset类,然后传入DataLoader中根据batch_size得到数据片段,shuffle用来判断每次数据分段时是否需要打乱数据
# 原示例中为双线程加载数据,但我的电脑不行,一直报错,这里设置为了0,也就是单线程。
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
                                          shuffle=True, num_workers=0)
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
                                       download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4,
                                         shuffle=False, num_workers=0)
classes = ('plane', 'car', 'bird', 'cat',
           'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

展示需要训练的部分图片,

def imshow(img):
    img = img / 2 + 0.5     # unnormalize
    npimg = img.numpy()
    plt.imshow(np.transpose(npimg, (1, 2, 0)))
    plt.show()


print(trainloader)
# 数据打乱所以得到的随机的
dataiter = iter(trainloader)
images, labels = dataiter.next()
# show images
imshow(torchvision.utils.make_grid(images))
# print labels
print(' '.join('%5s' % classes[labels[j]] for j in range(4)))

 

 

 

 定义一个卷积神经网络 在这之前先 从神经网络章节 复制神经网络,并修改它为3通道的图片(在此之前它被定义为1通道),16*5*5代替了self.num_flat_features(x),效果是一样的,都是第二次池化后得到的x尺寸。

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 16 * 5 * 5)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x


net = Net()

定义一个损失函数和优化器 让我们使用分类交叉熵Cross-Entropy 作损失函数,动量SGD做优化器。逻辑回归的损失函数用的便是交叉熵,交叉熵可以简单理解为两个概率分布的近似程度,公式如下,

 

动量SGD优化器是考虑了模型参数更新过程中参数的“惯性‘作用,防止参数停留在损失函数的’鞍部”,局部最小值等微分为0但不是全局最小值的地方。

v = momentum * v - learning_rate * dx

criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)

接下来计算随时函数,共两次迭代,但当训练完每2000张都将输出平均的损失函数,

for epoch in range(2):  # loop over the dataset multiple times

    running_loss = 0.0
    for i, data in enumerate(trainloader, 0):
        # get the inputs
        inputs, labels = data

        # zero the parameter gradients
        optimizer.zero_grad()

        # forward + backward + optimize
        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

        # print statistics
        running_loss += loss.item()
        if i % 2000 == 1999:    # print every 2000 mini-batches
            print('[%d, %5d] loss: %.3f' %
                  (epoch + 1, i + 1, running_loss / 2000))
            running_loss = 0.0
print('Finished Training')

结果如下,

 

像训练集时一样,取出四幅图进行观察,由于Dataloader时设置不打乱数据,每次所取的图片都是前面四张,并不会变,现在看一下模型的预测结果,

dataier = iter(testloader)
images1, labels1 = dataier.next()

# show images
imshow(torchvision.utils.make_grid(images1))
# print labels
print(' '.join('%5s' % classes[labels1[j]] for j in range(4)))

outputs = net(images1)
x, predicted = torch.max(outputs, 1)
print('Predicted: ', ' '.join('%5s' % classes[predicted[j]]for j in range(4)))

 

 训练好的模型在测试集上的效果很一般,正确率在55%,随机预测的正确率为10%左右,很稳定的数字,随即预测就是丢弃掉迭代那个循环,一般都在9%到10%徘徊

correct = 0
total = 0
with torch.no_grad():
    for data in testloader:
        images, labels = data
        outputs = net(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

print('Accuracy of the network on the 10000 test images: %d %%' % (
    100 * correct / total))

 

 最后是在测试集上测试模型,

 

class_correct = list(0. for i in range(10))
class_total = list(0. for i in range(10))
with torch.no_grad():
    for data in testloader:
        images, labels = data
        outputs = net(images)
        _, predicted = torch.max(outputs, 1)
        c = (predicted == labels).squeeze()
        for i in range(4):
            label = labels[i]
            class_correct[label] += c[i].item()
            class_total[label] += 1


for i in range(10):
    print('Accuracy of %5s : %2d %%' % (
        classes[i], 100 * class_correct[i] / class_total[i]))

输出:

 

posted @ 2021-03-30 21:51  两辰辰  阅读(381)  评论(0)    收藏  举报