import tensorflow as tf
import os
"""
uint8:存储,节约空间,比如在图片处理时,图片解码之前
float32:矩阵计算,提高精度,比如在图片处理时,图片解码之后
"""
# 训练数据连接:http://www.cs.toronto.edu/~kriz/cifar.html
# 定义cifar的数据命令行参数
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_string("cifar_dir", r"C:\Users\Administrator\PycharmProjects\learntest\tenso\data\cifar10", "文件的目录")
class CifarRead(object):
"""读取二进制文件,写入tfrecords,读取tfrecords"""
def __init__(self, filelist):
# 文件列表
self.filelist = filelist
# 定义读取图片的一些属性,cifar下载的文件默认是32*32像素,彩色通道3,目标值1比特
self.height = 32
self.weight = 32
self.channel = 3
self.label_bytes = 1
# 二进制文件每张图片的字节
self.bytes = self.height * self.weight * self.channel + self.label_bytes
def read_and_decode(self):
# 1.构造文件队列
file_queue = tf.train.string_input_producer(self.filelist)
# 2.构造二进制文件读取器
reader = tf.FixedLengthRecordReader(self.bytes)
key, value = reader.read(file_queue)
# 3.二进制文件内容解码
label_image = tf.decode_raw(value, tf.uint8)
# 4.将label_image中的特征值和目标值分割开来,cast目标值是0-9的整数所以转换成int32类型,特征值将用于计算,转换成float32类型
label = tf.cast(tf.slice(label_image, [0], [self.label_bytes]), tf.int32)
image = tf.cast(tf.slice(label_image, [self.label_bytes], [self.bytes - self.label_bytes]), tf.float32)
# print(label, image) # 返回结果Tensor("Slice:0", shape=(1,), dtype=uint8) Tensor("Slice_1:0", shape=(3072,), dtype=uint8)
# 5.可以对图片特征数据进行形状改变[3072] ==> [32, 32, 3]
image_reshape = tf.reshape(image, [self.height, self.weight, self.channel])
# 6.进行批处理
image_batch, label_batch = tf.train.batch([image_reshape, label], batch_size=10, num_threads=1, capacity=10)
return image_batch, label_batch
if __name__ == "__main__":
# 构造文件列表
file_name = os.listdir(FLAGS.cifar_dir)
filelist = [os.path.join(FLAGS.cifar_dir, file) for file in file_name if file[-3:] == "bin"]
cf = CifarRead(filelist)
image_batch, label_batch = cf.read_and_decode()
# 开启会话
with tf.Session() as sess:
# 定义线程协调器
coord = tf.train.Coordinator()
# 开启读取文件的线程
thd = tf.train.start_queue_runners(sess, coord=coord, start=True)
# 打印读取内容
print(sess.run([image_batch, label_batch]))
# 回收子线程
coord.request_stop()
coord.join(thd)