"""
K-近邻算法(KNN):如果一个样本在特征空间中的K个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别)
K取值问题:取小容易受异常值影响,取太大预测准确率不好
性能问题:时间复杂度很高,计算量太大,适用小数据场景,于几千~几万样本
"""
from sklearn.neighbors import KNeighborsClassifier
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
def knncls():
"""K-近邻预测用户签到位置,数据来源:https://www.kaggle.com/c/facebook-v-predicting-check-ins/data"""
# 读取数据
data = pd.read_csv(r"E:\testdata\xxxxx.csv")
# 处理数据
# 1.缩小数据,查询数据筛选
data = data.query("x>1.0 & x<1.25 & y>2.5 & y<2.75")
# 2.处理时间数据,将时间戳转换成日期格式,unit转换单位s
time_value = pd.to_datetime(data['time'], unit='s')
# 3.把日期格式转换成字典格式
time_value = pd.DatetimeIndex(time_value)
# 4.构造一些特征
data['day'] = time_value.day
data['hour'] = time_value.hour
data['weekday'] = time_value.weekday
# 5.把时间戳特征删除
data = data.drop(['time'], axis=1)
# 6.把签到数少于n个目标位置删除
place_count = data.groupby('place_id').count()
tf = place_count[place_count.row_id>3].reset_index()
data = data[data['place_id'].isin(tf.place_id)]
# 7.取出数据当做的特征值(x)和目标值(y)
y = data['place_id']
x = data.drop(['place_id'], axis=1)
# 8.将数据分割成训练集和测试集
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25)
# 特征工程(标准化)
std = StandardScaler()
# 对训练集和测试集的特征值进行标准化
x_train = std.fit_transform(x_train)
x_test = std.transform(x_test)
# 进行算法流程,n_neighbors取多少个最近邻样本进行类别统计
knn = KNeighborsClassifier(n_neighbors=5)
knn.fit(x_train, y_train)
# 将测试集特征值传入,得出预测结果
y_predict = knn.predict(x_test)
# 得出预测准确率
score = knn.score(x_test, y_test)