摘要: 以下内容是转至盛大创新研究院官方博客的一篇文章http://in.sdo.com/?p=1707,文中几乎涵盖了当今主流的推荐系统开源软件,我把全文都贴过来了,不过与原文不同的是我把有些已经停止更新/或者更新很慢的都往后面排了。另外也写写自己的一些使用总结。 原文开始: 收集和整理了目前互联网上能找到的开源推荐系统,并附上了个人的一些简单点评(未必全面准确),这个列表是目前为止比较全面的了,希望对大家了解掌握推荐系统有帮助(文/陈运文)SVDFeature由上海交大的同学开发,采用C++语言,代码质量很高。去年我们参加KDD竞赛时用过,很好很方便,而且出自咱们国人之手,所以置顶推荐!项目地址. 阅读全文
posted @ 2014-02-22 15:00 kobeshow 阅读(4001) 评论(0) 推荐(1) 编辑
摘要: 整理归纳一下《推荐系统实践》和《推荐系统导论》两本书的知识点,文中排版格式可能会有点乱,如有问题请指正。OK,闲话不说,先上2张图 对推荐系统的建模数据进行分析,代表型数据:1)无上下文的隐形反馈数据;2) 无上下文的显性反馈数据;3) 有上下文的隐形反馈数据;4)有小上下文的显性反馈数据,其中显性的反馈数据就是用户对物品的评分,而隐形的就是用户对物品的浏览,时长等数据(不同的领域,用户对物品的行为种类不一样),像我之前的做的都全是用有上下文的隐形反馈,都是通过点击、登陆、时长归纳出来的用户对物品的评分。 有了用户数据以后,可以做一些行为的分析:1) 用户活跃度和物品流行度的分布(用户... 阅读全文
posted @ 2014-02-22 13:59 kobeshow 阅读(3524) 评论(2) 推荐(0) 编辑