深入理解递归

递归的思想

以此类推是递归的基本思想。

具体来讲就是把规模大的问题转化为规模小的相似的子问题来解决。在函数实现时,因为解决大问题的方法和解决小问题的方法往往是同一个方法,所以就产生了函数调用它自身的情况。另外这个解决问题的函数必须有明显的结束条件,这样就不会产生无限递归的情况了。

递归的两个条件

  • 可以通过递归调用来缩小问题规模,且新问题与原问题有着相同的形式。(自身调用)
  • 存在一种简单情境,可以使递归在简单情境下退出。(递归出口)

递归算法的一般形式

func( mode){
    if(endCondition){      //递归出口
          end;
    }else{
         func(mode_small)  //调用本身,递归
    }
}

求一个数的阶乘是练习简单而典型的例子,阶乘的递推公式为:factorial(n)=n*factorial(n-1),其中n为非负整数,且0!=1,1!=1

我们根据递推公式可以轻松的写出其递归函数:

    public static long factorial(int n) throws Exception {
        if (n < 0)
            throw new Exception("参数不能为负!");
        else if (n == 1 || n == 0)
            return 1;
        else
            return n * factorial(n - 1);
    }

递归的过程

在求解6的阶乘时,递归过程如下所示。

clip_image001

我们会惊奇的发现这个过程和栈的工作原理一致对,递归调用就是通过栈这种数据结构完成的。整个过程实际上就是一个栈的入栈和出栈问题。然而我们并不需要关心这个栈的实现,这个过程是由系统来完成的。

那么递归中的“递”就是入栈,递进;“归”就是出栈,回归

我们可以通过一个更简单的程序来模拟递进和回归的过程:

    /**
     * 关于 递归中 递进和回归的理解
     * @param n
     */
    public static void recursion_display(int n) {
        int temp=n;//保证前后打印的值一样
         System.out.println("递进:" + temp);
        if (n > 0) {
            recursion_display(--n);
        }
        System.out.println("回归:" + temp);
    }

递归的例子

斐波那契数列

斐波那契数列的递推公式:Fib(n)=Fib(n-1)+Fib(n-2),指的是如下所示的数列:

1、1、2、3、5、8、13、21.....

按照其递推公式写出的递归函数如下:

    public static int fib(int n) throws Exception {
        if (n < 0)
            throw new Exception("参数不能为负!");
        else if (n == 0 || n == 1)
            return n;
        else
            return fib(n - 1) + fib(n - 2);
    }

递归调用的过程像树一样,通过观察会发现有很多重复的调用

image

归并排序

归并排序也是递归的典型应用,其思想:将序列分为若干有序序列(开始为单个记录),两个相邻有序的序列合并成一个有序的序列,以此类推,直到整个序列有序。

    //递归过程是:在递进的过程中拆分数组,在回归的过程合并数组
    public static void mergeSort(int[] source, int[] temp, int first, int last) {
        if (first < last) {
            int mid = (first + last) / 2;
            mergeSort(source, temp, first, mid);    //归并排序前半个子序列
            mergeSort(source, temp, mid + 1, last); //归并排序后半个子序列
            merge(source, temp, first, mid, last);    //在回归过程中合并
        } else if (first == last) {                    //待排序列只有一个,递归结束
            temp[first] = source[first];
        }
    }

同样调用过程向树一样,但是它并没有重复调用的问题。在递进的过程中拆分数组,在回归的过程合并数组 。通过递归来实现归并排序,程序结构和条理非常清晰。

clip_image002

posted @ 2016-05-05 19:46  klguang  阅读(11696)  评论(5编辑  收藏