P3242 [HNOI2015] 接水果
题面
解法
这道题来回顾一个 trick,他就是可以将树上的操作问题通过 dfs 序转化为序列上的操作。
那么这道题我们对于苹果来找盘子是难做的,应为我对于全集找子集其实是困难的,但是我们对于子集找全集就变得简单了。而这道题我们看到看到第 \(k\) 大问题,我们想到的是二分答案,二分答案并判断小于等于这个答案的 \(mid\) 包含它的是否有 \(k\) 个这个使用扫描线加树状数组差分就可以了。
这道题有个教训,以后需要再编译的时候使用 -Werror 写程序一定要把所有的 warning 调到没有。
代码
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
const ll N = 4e5 + 5;
struct node
{
ll op, x, y, l, r, d, id;
} q[N], tl[N], tr[N];
ll ans[N], ntt;
ll c[N];
ll n, p, _;
inline ll lb(ll x)
{
return x & (-x);
}
inline void add(ll x, ll d)
{
while (x <= n)
{
c[x] += d;
x += lb(x);
}
}
inline ll query(ll x)
{
ll ret = 0;
while (x)
{
ret += c[x];
x -= lb(x);
}
return ret;
}
bool cmp(node x, node y)
{
if (x.x == y.x)
{
return x.op < y.op;
}
return x.x < y.x;
}
void solve(ll l, ll r, ll ql, ll qr)
{
if (l > r)
{
return;
}
if (ql > qr)
{
return;
}
if (ql == qr)
{
for (int i = l; i <= r; i++)
{
if (q[i].op == 2)
{
ans[q[i].id] = ql;
}
}
return;
}
ll mid = (ql + qr) >> 1;
ll lt = 0, rt = 0;
vector<node> qqq;
for (int i = l; i <= r; i++)
{
if (q[i].op == 1)
{
if (q[i].d <= mid)
{
qqq.push_back({1, q[i].x, q[i].y, 0, 0, 1, 0});
qqq.push_back({1, q[i].x, q[i].r + 1, 0, 0, -1, 0});
qqq.push_back({1, q[i].l + 1, q[i].y, 0, 0, -1, 0});
qqq.push_back({1, q[i].l + 1, q[i].r + 1, 0, 0, 1, 0});
tl[++lt] = q[i];
}
else
{
tr[++rt] = q[i];
}
}
else
{
qqq.push_back(q[i]);
}
}
stable_sort(qqq.begin(), qqq.end(), cmp);
for (auto &i : qqq)
{
if (i.op == 1)
{
add(i.y, i.d);
}
else
{
ll t = query(i.y);
if (t < i.d)
{
i.d -= t;
tr[++rt] = i;
}
else
{
tl[++lt] = i;
}
}
}
for (int i = 1; i <= lt; i++)
{
q[l + i - 1] = tl[i];
}
for (int i = 1; i <= rt; i++)
{
q[l + lt + i - 1] = tr[i];
}
if (lt)
{
solve(l, l + lt - 1, ql, mid);
}
if (rt)
{
solve(l + lt, r, mid + 1, qr);
}
}
vector<ll> g[N];
ll st[N], ed[N], f[N][22], tot, dep[N];
void dfs(ll x, ll fa)
{
f[x][0] = fa;
for (int i = 1; i <= 20; i++)
{
f[x][i] = f[f[x][i - 1]][i - 1];
}
st[x] = ++tot;
dep[x] = dep[fa] + 1;
for (auto v : g[x])
{
if (v == fa)
{
continue;
}
dfs(v, x);
}
ed[x] = tot;
}
inline ll lca(ll x, ll y)
{
if (dep[x] < dep[y])
{
swap(x, y);
}
ll cha = dep[x] - dep[y];
for (int i = 0; i <= 20; i++)
{
if (cha >> i & 1)
{
x = f[x][i];
}
}
if (x == y)
{
return x;
}
for (int i = 20; i >= 0; i--)
{
if (f[x][i] != f[y][i])
{
x = f[x][i], y = f[y][i];
}
}
return f[x][0];
}
int main()
{
// freopen("fruit1.in", "r", stdin);
// freopen("fruit.out", "w", stdout);
ios::sync_with_stdio(0), cin.tie(0);
cin >> n >> p >> _;
for (int i = 1; i < n; i++)
{
ll u, v;
cin >> u >> v;
g[u].push_back(v);
g[v].push_back(u);
}
dfs(1, 0);
for (int i = 1; i <= p; i++)
{
ll u, v, k;
cin >> u >> v >> k;
if (dep[u] > dep[v])
{
swap(u, v);
}
ll lc = lca(u, v);
ll stu = st[u], edu = ed[u], stv = st[v], edv = ed[v];
if (lc == u)
{
ll cha = dep[v] - dep[u] - 1;
ll t = v;
for (int j = 20; j >= 0; j--)
{
if (cha >> j & 1)
{
t = f[t][j];
}
}
if (st[t] >= 2)
{
q[++ntt] = node{1, 1, stv, st[t] - 1, edv, k, 0};
}
if (ed[t] + 1 <= n)
{
q[++ntt] = node{1, ed[t] + 1, stv, n, edv, k, 0};
}
}
else
{
q[++ntt] = node{1, stu, stv, edu, edv, k, 0};
}
if (q[ntt].x > q[ntt].y)
{
swap(q[ntt].x, q[ntt].y);
swap(q[ntt].l, q[ntt].r);
}
}
for (int i = 1; i <= _; i++)
{
ll l, r, k;
cin >> l >> r >> k;
if (st[l] > st[r])
{
swap(l, r);
}
q[++ntt] = node{2, st[l], st[r], 0, 0, k, i};
}
solve(1, ntt, 0, 1e9);
for (int i = 1; i <= _; i++)
{
cout << ans[i] << "\n";
}
return 0;
}

浙公网安备 33010602011771号