摘要: 0 前言 上”最优化“课,老师讲到了无约束优化的拉格朗日乘子法和KKT条件。 这个在SVM的推导中有用到,所以查资料加深一下理解。 1 无约束优化 对于无约束优化问题中,如果一个函数f是凸函数,那么可以直接通过f(x)的梯度等于0来求得全局极小值点。 为了避免陷入局部最优,人们尽可能使用凸函数作为优 阅读全文
posted @ 2019-07-14 20:37 kitiz 阅读(263) 评论(0) 推荐(0)
摘要: 1.原始问题 假设是定义在上的连续可微函数(为什么要求连续可微呢,后面再说,这里不用多想),考虑约束最优化问题: 称为约束最优化问题的原始问题。 现在如果不考虑约束条件,原始问题就是: 因为假设其连续可微,利用高中的知识,对求导数,然后令导数为0,就可解出最优解,很easy. 那么,问题来了(呵呵。 阅读全文
posted @ 2019-07-14 20:25 kitiz 阅读(119) 评论(0) 推荐(0)
摘要: 拉格朗日乘子法(Lagrange Multiplier)和 KKT(Karush-Kuhn-Tucker)条件是求解约束优化问题的重要方法,在有等式约束时使用拉格朗日乘子法,在有不等约束时使用KKT条件。当然,这两个方法求得的结果只是必要条件,只有当目标函数是凸函数的情况下,才能保证是充分必要条件。 阅读全文
posted @ 2019-07-14 18:30 kitiz 阅读(3507) 评论(0) 推荐(0)