#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstdlib>
using namespace std;
#define N 20
double A[N][N],L[N][N],U[N][N],b[N],Y[N],X[N];
/// -------------------------------------------------------------------------文件处理
void saveLU(int n)
{
for(int i=0; i<n; i++) {
for(int j=0; j<n; j++) {
cout<<L[i][j]<<" ";
}
cout<<endl;
}
cout<<endl<<endl;
for(int i=0; i<n; i++) {
for(int j=0; j<n; j++) {
cout<<U[i][j]<<" ";
}
cout<<endl;
}
}
void saveT(double arr[], int n)
{
for(int i=0; i<n; i++) {
cout<<arr[i]<<" ";
}
cout<<endl<<endl;
}
///-------------------------------------------------------------------------初始化
void init(int n)
{
freopen("input.txt","r",stdin);
freopen("lu.txt","w",stdout);
for(int i=0; i<n; i++) {
for(int j=0; j<n; j++) {
cin>>A[i][j];
}
}
for(int i=0; i<n; i++) {
cin>>b[i];
}
}
///-------------------------------------------------------------------------直接法分解LU
void breakdown(int n)
{
for (int i=0; i<n; i++) {
U[0][i] = A[0][i]; ///U 第一行
L[i][0] = A[i][0]/U[0][0]; ///L 第一列
}
///U 第R行 L 第R列
double tmp = 0;
for (int r=1; r<n; r++) {
for (int i=r; i<n; i++) {
tmp = A[r][i];
for(int k=0;k<=r-1; k++) {
tmp -= L[r][k]*U[k][i];
}
U[r][i] = tmp;
tmp =A[i][r];
for(int k=0; k<=r-1; k++) {
tmp -= L[i][k]*U[k][r];
}
L[i][r] = tmp/U[r][r];
}
}
}
///-------------------------------------------------------------------------直接法计算Y
void computeY(int n)
{
Y[0]=b[0]; ///自上往下
for (int i=1; i<n; i++) {
Y[i] = b[i];
for (int j=0; j<=i-1; j++) {
Y[i] -= L[i][j]*Y[j];
}
}
}
///-------------------------------------------------------------------------直接法计算X
void computeX(int n)
{
int con = n;
n--;
X[n] = Y[n]/U[n][n]; ///自下往上
for (int i=n-1; i>=0; i--) {
X[i] = Y[i];
for (int k=i+1; k<con; k++) {
X[i] -= U[i][k]*X[k];
}
X[i]/=U[i][i];
}
}
///追赶法解三对角矩阵方程组{1.三对角矩阵LU分解 2.求y 3.求x }
///-------------------------------------------------------------------------1. LU分解
void TriangleBreakdown(int n)
{
for (int i=0; i<n; i++) { /// L的下对角线 U的主对角线可直接得出
U[i][i] = 1;
if(i+1 < n)
L[i+1][i] = A[i+1][i];
}
L[0][0] = A[0][0];
U[0][1] = A[0][1]/L[0][0];
for (int i=1; i<n; i++) { ///L的下对角线 U的上对角线
L[i][i] = A[i][i] - L[i][i-1] * U[i-1][i];
if(i+1 < n)
U[i][i+1] = A[i][i+1]/L[i][i];
}
}
///------------------------------------------------------------------------- 计算X
void TriangleY(int n)
{
Y[0] = b[0]/A[0][0];
for (int i=1; i<n; i++) {
Y[i] = (b[i]-A[i][i-1]*Y[i-1])/L[i][i];
}
}
///-------------------------------------------------------------------------计算Y
void TriangleX(int n)
{
X[n-1] = Y[n-1];
for (int i=n-2; i>=0; i--) {
X[i] = Y[i] - U[i][i+1] * X[i+1];
}
}
///------------------------------------------------------三种方法整合
double AB[N][N+1];
void swap_cols(int x, int y, int n) ///交换两行
{
double tmp = 0;
for(int i=0; i<n+1; i++) {
tmp = AB[x][i];
AB[x][i] = AB[y][i];
AB[y][i] = tmp;
}
}
int find_max_col(int x, int n) /// 此列下方最大值
{
double max1 = fabs(AB[x][x]);
int res = x;
for(int i=x+1; i<n; i++) {
if(fabs(AB[i][x]) > max1) {
max1 = AB[i][x];
res = i;
}
}
return res;
}
void compute_gauss_X(int n) ///计算结果X
{
if(AB[n-1][n-1] == 0)
cerr<<"wrong: divide 0 \n";
X[n-1] = AB[n-1][n]/AB[n-1][n-1];
double tmp =0;
for(int i=n-2; i>=0; i--) {
tmp = AB[i][n];
for(int j=i+1; j<n; j++){
tmp -= X[j]* AB[i][j];
//if(fabs(tmp)<10e-6) tmp = 0;
}
if(AB[i][i] != 0)
X[i] = tmp/AB[i][i];
}
}
void solution_gauss(int n)/// 列主元高斯消元
{
for(int i=0; i<n; i++) {
for(int j=0; j<n; j++ ) {
AB[i][j] = A[i][j];
}
AB[i][n] = b[i];
}
int pos = 0;
double m = 0;
for(int i=0; i<=n; i++) { ///标准行
pos =find_max_col(i, n);
if( pos != i){
swap_cols(i, pos, n);
}
for(int i=0; i<n; i++) {
for(int j=0; j<n+1; j++) {
cout<<AB[i][j]<<" ";
}
cout<<endl;
}
cout<<"****************************\n";
for(int j=i+1; j<n; j++) { ///标准行以下
m = AB[j][i] / AB[i][i];
for(int k=i; k<n+1; k++) { ///此行所有数据
AB[j][k] -= m*AB[i][k];
}
}
cout<<"step# "<<i<<" :\n--------------------------\n";
for(int i=0; i<n; i++) {
for(int j=0; j<n+1; j++) {
cout<<AB[i][j]<<" ";
}
cout<<endl;
}
cout<<"----------------------------\n\n\n";
}
compute_gauss_X(n);
saveT(X,n);
}
void solution_LU(int n) ///直接法LU
{
breakdown(n);
computeY(n);
computeX(n);
saveLU(n);
saveT(Y,n);
saveT(X,n);
}
void solution_triangle_chase(int n) ///追赶法
{
TriangleBreakdown(n);
TriangleY(n);
TriangleX(n);
saveT(Y,n);
saveT(X,n);
}
int main()
{
int n = 3,choise=1;
cout<<"选择方法: 1.Gauss 2.direct LU 3.triangle chase : \t\t";
cin>>choise;
cout<<"输入矩阵大小\n";
cin>>n;
init(n);
switch(choise)
{
case 1: solution_gauss(n);break;
case 2: solution_LU(n); break;
case 3: solution_triangle_chase(n);
}
return 0;
}