NOI模拟赛(3.13)Hike (远行)
Solution
操作有加边和维护联通块的最远端点,可以用LCT做
抄标程的,根本不会写啊
复杂度为O((N+Q) log N)
#include <stdio.h>
#include <string.h>
#define rg register
#define dmax(a, b) ((a) > (b) ? (a) : (b))
inline int rd()
{
rg int x = 0, c = getchar(), f = 1;
for(; c < 48 || c > 57; c = getchar()) if(c == 45) f = -1;
for(; c > 47 && c < 58; c = getchar()) x = (x << 1) + (x << 3) + c - 48;
return x * f;
}
inline void dswap(rg int &x, rg int &y)
{
x ^= y ^= x ^= y;
}
const int N = 500010;
int on_line, n, Q, bel[N], dia[N][2];
struct node
{
bool rev;
int sz, ch[2], fa;
}T[N];
int find(rg int x) {return bel[x] == x ? x : bel[x] = find(bel[x]);}
inline void update(rg int u) {if(u) T[u].sz = T[T[u].ch[0]].sz + T[T[u].ch[1]].sz + 1;}
inline bool is_root(rg int u) {rg int fa = T[u].fa; return !fa || !(T[fa].ch[0] == u || T[fa].ch[1] == u);}
inline void setch(rg int u, rg int v, rg int c)
{
T[u].ch[c] = v;
if(v) T[v].fa = u;
}
inline void mark(rg int u)
{
if(!u)return;
T[u].rev ^= 1;
dswap(T[u].ch[0], T[u].ch[1]);
}
inline void down(rg int u)
{
if(!T[u].rev)return;
mark(T[u].ch[0]);
mark(T[u].ch[1]);
T[u].rev = 0;
}
inline void rotate(rg int u)
{
int fa = T[u].fa, ft = T[fa].fa, c = T[fa].ch[1] == u;
T[u].fa = ft;
if(!is_root(fa)) setch(ft, u, T[ft].ch[1] == fa);
setch(fa, T[u].ch[!c], c);
setch(u, fa, !c);
update(fa);
}
inline void splay(rg int u)
{
static int stack[N];
rg int top = 0, p = u;
for(; !is_root(p); p = T[p].fa) stack[++top] = p;
stack[++top] = p;
for(; top; top--) down(stack[top]);
for(; !is_root(u); rotate(u))
{
rg int fa = T[u].fa, ft = T[fa].fa;
if(is_root(fa)) continue;
((T[ft].ch[1] == fa) ^ (T[fa].ch[1] == u)) ? rotate(u) : rotate(fa);
}
update(u);
}
inline int access(rg int u)
{
int nxt = 0;
for(; u; nxt = u, u = T[u].fa) splay(u), T[u].ch[1] = nxt, update(u);
return nxt;
}
inline void make_root(rg int u) {mark(access(u));}
inline void link(rg int u, rg int v)
{
make_root(v);
splay(v);
T[v].fa = u;
access(v);
}
inline int get_dis(rg int u, rg int v)
{
make_root(u);
access(v);
splay(v);
return T[v].sz - 1;
}
inline void merge(rg int a, rg int b)
{
rg int u = find(a), v = find(b);
bel[v] = u;
link(a, b);
rg int lu = dia[u][0], lv = dia[u][1], h = get_dis(dia[u][0], dia[u][1]);
rg int h1 = get_dis(dia[v][0], dia[v][1]);
if(h1 > h) lu = dia[v][0], lv = dia[v][1], h = h1;
for(rg int i = 0; i < 2; i++)
for(rg int j = 0; j < 2; j++)
{
h1 = get_dis(dia[u][i], dia[v][j]);
if(h1 > h) lu = dia[u][i], lv = dia[v][j], h = h1;
}
dia[u][0] = lu, dia[u][1] = lv;
}
int main()
{
freopen("hike.in", "r", stdin), freopen("hike.out", "w", stdout);
on_line = rd(), n = rd(), Q = rd();
for(rg int i = 1; i <= n; i++) bel[i] = dia[i][0] = dia[i][1] = i;
rg int last_ans = 0;
while(Q--)
{
rg int ty = rd();
if(ty & 1)
{
rg int u = rd(), v = rd();
if(on_line) u ^= last_ans, v ^= last_ans;
merge(u, v);
}
else{
rg int u = rd();
if(on_line) u ^= last_ans;
rg int p = find(u);
printf("%d\n", last_ans = dmax(get_dis(u, dia[p][0]), get_dis(u, dia[p][1])));
}
}
fclose(stdin), fclose(stdout);
return 0;
}

浙公网安备 33010602011771号