Deep Belief Network简介
摘要:
1. 多层神经网络存在的问题 常用的神经网络模型, 一般只包含输入层, 输出层和一个隐藏层: 理论上来说, 隐藏层越多, 模型的表达能力应该越强。但是, 当隐藏层数多于一层时, 如果我们使用随机值来初始化权重, 使用梯度下降来优化参数就会出现许多问题[1]:如果初始权重值设置的过大, 则训练过程中权重值会落入局部最小值(而不是全局最小值)。如果初始的权重值设置的过小, 则在使用BP调整参数时, 当误差传递到最前面几层时, 梯度值会很小, 从而使得权重的改变很小, 无法得到最优值。[疑问, 是否可以提高前几层的learning rate来解决这个问题?] 所以, 如果初始的权重值已经比较... 阅读全文
posted @ 2013-08-18 16:52 潘的博客 阅读(13108) 评论(1) 推荐(1)
浙公网安备 33010602011771号