【多线程与高并发】3-JUC同步锁
锁的分类:
乐观锁(CAS),悲观锁(synchronized),自旋锁(CAS),读写锁(共享锁、排他锁),分段锁(LongAdder,ConcurrentHashMap)
ReentrantLock 可重入锁
reentrantlock用于替代synchronized,底层CAS
wait/notify为重点
本例中由于m1锁定this,只有m1执行完毕的时候,m2才能执行
NonfairSync->Sync->AbstractQueuedSynchronizer
public class T01_ReentrantLock1 {
synchronized void m1() {
for(int i=0; i<10; i++) {
try {
TimeUnit.SECONDS.sleep(1);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(i);
if(i == 2) m2();
}
}
synchronized void m2() {
System.out.println("m2 ...");
}
public static void main(String[] args) {
T01_ReentrantLock1 rl = new T01_ReentrantLock1();
new Thread(rl::m1).start();
try {
TimeUnit.SECONDS.sleep(1);
} catch (InterruptedException e) {
e.printStackTrace();
}
//new Thread(rl::m2).start();
}
}
需要注意的是,必须要必须要必须要手动释放锁(重要的事情说三遍)* 使用syn锁定的话如果遇到异常,jvm会自动释放锁,但是lock必须手动释放锁,因此经常在finally中进行锁的释放
void m1() {
try {
lock.lock(); //synchronized(this)
for (int i = 0; i < 10; i++) {
TimeUnit.SECONDS.sleep(1);
System.out.println(i);
}
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
使用reentrantlock可以进行"尝试锁定"tryLock,这样无法锁定,或者在指定时间内无法锁定,线程可以决定是否继续等待
try {
locked = lock.tryLock(5, TimeUnit.SECONDS);
System.out.println("m2 ..." + locked);
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
if(locked) lock.unlock();
}
使用ReentrantLock还可以调用lockInterruptibly方法,可以对线程interrupt方法做出响应,在一个线程等待锁的过程中,可以被打断
public static void main(String[] args) {
Lock lock = new ReentrantLock();
Thread t1 = new Thread(()->{
try {
lock.lock();
System.out.println("t1 start");
TimeUnit.SECONDS.sleep(Integer.MAX_VALUE);
System.out.println("t1 end");
} catch (InterruptedException e) {
System.out.println("interrupted!");
} finally {
lock.unlock();
}
});
t1.start();
Thread t2 = new Thread(()->{
try {
//lock.lock();
lock.lockInterruptibly(); //可以对interrupt()方法做出响应
System.out.println("t2 start");
TimeUnit.SECONDS.sleep(5);
System.out.println("t2 end");
} catch (InterruptedException e) {
System.out.println("interrupted!");
} finally {
lock.unlock();
}
});
t2.start();
try {
TimeUnit.SECONDS.sleep(1);
} catch (InterruptedException e) {
e.printStackTrace();
}
t2.interrupt(); //打断线程2的等待
}
ReentrantLock还可以指定为公平锁,队列数线程是否检查,先来后到
public class T05_ReentrantLock5 extends Thread {
private static ReentrantLock lock=new ReentrantLock(true);
//参数为true表示为公平锁,请对比输出结果
public void run() {
for(int i=0; i<100; i++) {
lock.lock();
try{
System.out.println(Thread.currentThread().getName()+"获得锁");
}finally{
lock.unlock();
}
}
}
public static void main(String[] args) {
T05_ReentrantLock5 rl=new T05_ReentrantLock5();
Thread th1=new Thread(rl);
Thread th2=new Thread(rl);
th1.start();
th2.start();
}
}
CountDownLatch 门闩(shuan)
latch.await();
倒数计数,用来等待线程结束。
private static void usingCountDownLatch() {
Thread[] threads = new Thread[100];
CountDownLatch latch = new CountDownLatch(threads.length);
for(int i=0; i<threads.length; i++) {
threads[i] = new Thread(()->{
int result = 0;
for(int j=0; j<10000; j++) result += j;
latch.countDown();
});
}
for (int i = 0; i < threads.length; i++) {
threads[i].start();
}
try {
latch.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("end latch");
}
CyclicBarrier 循环栅栏
限流举例(Guava RateLimiter)
适用场景:复杂操作顺序执行->并发操作
//CyclicBarrier barrier = new CyclicBarrier(20);
CyclicBarrier barrier = new CyclicBarrier(20, () -> System.out.println("满人"));
/*CyclicBarrier barrier = new CyclicBarrier(20, new Runnable() {
@Override
public void run() {
System.out.println("满人,发车");
}
});*/
for(int i=0; i<100; i++) {
new Thread(()->{
try {
barrier.await();
} catch (InterruptedException e) {
e.printStackTrace();
} catch (BrokenBarrierException e) {
e.printStackTrace();
}
}).start();
}
}
Phaser 阶段
public class T09_TestPhaser2 {
static Random r = new Random();
static MarriagePhaser phaser = new MarriagePhaser();
static void milliSleep(int milli) {
try {
TimeUnit.MILLISECONDS.sleep(milli);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
public static void main(String[] args) {
phaser.bulkRegister(7);
for(int i=0; i<5; i++) {
new Thread(new Person("p" + i)).start();
}
new Thread(new Person("新郎")).start();
new Thread(new Person("新娘")).start();
}
static class MarriagePhaser extends Phaser {
@Override
protected boolean onAdvance(int phase, int registeredParties) {
switch (phase) {
case 0:
System.out.println("所有人到齐了!" + registeredParties);
System.out.println();
return false;
case 1:
System.out.println("所有人吃完了!" + registeredParties);
System.out.println();
return false;
case 2:
System.out.println("所有人离开了!" + registeredParties);
System.out.println();
return false;
case 3:
System.out.println("婚礼结束!新郎新娘抱抱!" + registeredParties);
return true;
default:
return true;
}
}
}
static class Person implements Runnable {
String name;
public Person(String name) {
this.name = name;
}
public void arrive() {
milliSleep(r.nextInt(1000));
System.out.printf("%s 到达现场!\n", name);
phaser.arriveAndAwaitAdvance();
}
public void eat() {
milliSleep(r.nextInt(1000));
System.out.printf("%s 吃完!\n", name);
phaser.arriveAndAwaitAdvance();
}
public void leave() {
milliSleep(r.nextInt(1000));
System.out.printf("%s 离开!\n", name);
phaser.arriveAndAwaitAdvance();
}
private void hug() {
if(name.equals("新郎") || name.equals("新娘")) {
milliSleep(r.nextInt(1000));
System.out.printf("%s 洞房!\n", name);
phaser.arriveAndAwaitAdvance();
} else {
phaser.arriveAndDeregister();
//phaser.register()
}
}
@Override
public void run() {
arrive();
eat();
leave();
hug();
}
}
}
ReadWriteLock(重点 读写锁)
StampedLock 是其升级版
public class T10_TestReadWriteLock {
static Lock lock = new ReentrantLock();// 效率非常低
private static int value;
static ReadWriteLock readWriteLock = new ReentrantReadWriteLock();
static Lock readLock = readWriteLock.readLock(); //共享锁
static Lock writeLock = readWriteLock.writeLock();//排他锁
public static void read(Lock lock) {
try {
lock.lock();
Thread.sleep(1000);
System.out.println("read over!");
//模拟读取操作
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
public static void write(Lock lock, int v) {
try {
lock.lock();
Thread.sleep(1000);
value = v;
System.out.println("write over!");
//模拟写操作
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
public static void main(String[] args) {
//Runnable readR = ()-> read(lock);
Runnable readR = ()-> read(readLock);
//Runnable writeR = ()->write(lock, new Random().nextInt());
Runnable writeR = ()->write(writeLock, new Random().nextInt());
for(int i=0; i<18; i++) new Thread(readR).start();
for(int i=0; i<2; i++) new Thread(writeR).start();
}
}
Semaphore 信号灯
只有N个线程同时进行,可用于限流(车道、收费站)
public static void main(String[] args) {
//Semaphore s = new Semaphore(2);
Semaphore s = new Semaphore(2, true); //默认false不公平
//允许一个线程同时执行
//Semaphore s = new Semaphore(1);
new Thread(()->{
try {
s.acquire();//-1 获得锁(许可)
System.out.println("T1 running...");
Thread.sleep(200);
System.out.println("T1 running...");
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
s.release();
}
}).start();
new Thread(()->{
try {
s.acquire();
System.out.println("T2 running...");
Thread.sleep(200);
System.out.println("T2 running...");
s.release();
} catch (InterruptedException e) {
e.printStackTrace();
}
}).start();
}
Exchanger(交换器)
2者交换:游戏中交换装备
static Exchanger<String> exchanger = new Exchanger<>();
// 可以看成一个容器
public static void main(String[] args) {
new Thread(()->{
String s = "T1";
try {
s = exchanger.exchange(s); //变成T2
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName() + " " + s);
}, "t1").start();
new Thread(()->{
String s = "T2";
try {
s = exchanger.exchange(s);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName() + " " + s);
}, "t2").start();
}
LockSupport
public static void main(String[] args) {
Thread t = new Thread(()->{
for (int i = 0; i < 10; i++) {
System.out.println(i);
if(i == 5) {
LockSupport.park();//停止
}
try {
TimeUnit.SECONDS.sleep(1);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
});
t.start();
LockSupport.unpark(t);// 并行执行 放行
/*try {
TimeUnit.SECONDS.sleep(8);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("after 8 senconds!");
LockSupport.unpark(t);*/
}
- 实现一个容器,提供两个方法,add,size,写两个线程,线程1添加10个元素到容器中,线程2实现监控元素的个数,当个数到5个时,线程2给出提示并结束
- 这里使用wait和notify做到,wait会释放锁,而notify不会释放锁,需要注意的是,运用这种方法,必须要保证t2先执行,也就是首先让t2监听才可以
阅读下面的程序,并分析输出结果
notify之后,t1必须释放锁,t2退出后,也必须notify,通知t1继续执行,整个通信过程比较繁琐
public class T04_NotifyFreeLock {
//添加volatile,使t2能够得到通知
volatile List lists = new ArrayList();
public void add(Object o) {
lists.add(o);
}
public int size() {
return lists.size();
}
public static void main(String[] args) {
T04_NotifyFreeLock c = new T04_NotifyFreeLock();
final Object lock = new Object();
new Thread(() -> {
synchronized(lock) {
System.out.println("t2启动");
if(c.size() != 5) {
try {
lock.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
System.out.println("t2 结束");
//通知t1继续执行
lock.notify();
}
}, "t2").start();
try {
TimeUnit.SECONDS.sleep(1);
} catch (InterruptedException e1) {
e1.printStackTrace();
}
new Thread(() -> {
System.out.println("t1启动");
synchronized(lock) {
for(int i=0; i<10; i++) {
c.add(new Object());
System.out.println("add " + i);
if(c.size() == 5) {
lock.notify();
//释放锁,让t2得以执行
try {
lock.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
try {
TimeUnit.SECONDS.sleep(1);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}, "t1").start();
}
}
- 使用Latch(门闩)替代wait notify来进行通知,好处是通信方式简单,同时也可以指定等待时间,使用await和countdown方法替代wait和notify CountDownLatch不涉及锁定,当count的值为零时当前线程继续运行,
当不涉及同步,只是涉及线程通信的时候,用synchronized + wait/notify就显得太重了,这时应该考虑countdownlatch/cyclicbarrier/semaphore
public static void main(String[] args) {
T05_CountDownLatch c = new T05_CountDownLatch();
CountDownLatch latch = new CountDownLatch(1);
new Thread(() -> {
System.out.println("t2启动");
if (c.size() != 5) {
try {
latch.await();
//也可以指定等待时间
//latch.await(5000, TimeUnit.MILLISECONDS);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
System.out.println("t2 结束");
}, "t2").start();
try {
TimeUnit.SECONDS.sleep(1);
} catch (InterruptedException e1) {
e1.printStackTrace();
}
new Thread(() -> {
System.out.println("t1启动");
for (int i = 0; i < 10; i++) {
c.add(new Object());
System.out.println("add " + i);
if (c.size() == 5) {
// 打开门闩,让t2得以执行
latch.countDown();
}
// 下方如果注释,则产生时间差,可能到6 T2才进行打印,解决方法,门闩互相打开关闭
/*try {
TimeUnit.SECONDS.sleep(1);
} catch (InterruptedException e) {
e.printStackTrace();
}*/
}
}, "t1").start();
}
解决方法:
public static void main(String[] args) {
T05_CountDownLatch c = new T05_CountDownLatch();
CountDownLatch latch1 = new CountDownLatch(1);
CountDownLatch latch2 = new CountDownLatch(1);
new Thread(() -> {
System.out.println("t2 qidong");
if (c.size() != 5) {
try {
latch2.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
System.out.println("t2 jieshu");
latch1.countDown();
}, "t2").start();
try {
TimeUnit.SECONDS.sleep(1);
} catch (InterruptedException e1) {
e1.printStackTrace();
}
new Thread(() -> {
System.out.println("t1 qidong");
for (int i = 0; i < 10; i++) {
c.add(new Object());
System.out.println("add " + i);
if (c.size() == 5) {
latch2.countDown();
try {
latch1.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}, "t1").start();
}
- 使用LockSupport
- 相比wait/notify更灵活,内部使用unsafe类
static Thread t1 = null, t2 = null;
public static void main(String[] args) {
T07_LockSupport_WithoutSleep c = new T07_LockSupport_WithoutSleep();
t1 = new Thread(() -> {
System.out.println("t1启动");
for (int i = 0; i < 10; i++) {
c.add(new Object());
System.out.println("add " + i);
if (c.size() == 5) {
LockSupport.unpark(t2);
LockSupport.park();
}
}
}, "t1");
t2 = new Thread(() -> {
//System.out.println("t2启动");
//if (c.size() != 5) {
LockSupport.park();
//}
System.out.println("t2 结束");
LockSupport.unpark(t1);
}, "t2");
t2.start();
t1.start();
}
扩展思路:使用Semaphore
public class SemaphoreTest {
static Thread t1, t2;
public static void main(String[] args) {
SemaphoreTest semaphoreTest = new SemaphoreTest();
Semaphore s = new Semaphore(1);
t1 = new Thread(() -> {
try {
s.acquire();
for (int i = 0; i < 5; i++) {
System.out.println(i);
}
s.release();
} catch (InterruptedException e) {
e.printStackTrace();
}
try {
t2.start();
t2.join();
} catch (InterruptedException e) {
e.printStackTrace();
}
try {
s.acquire();
for (int i = 5; i < 10; i++) {
System.out.println(i);
}
s.release();
} catch (InterruptedException e) {
e.printStackTrace();
}
}, "t1");
t2 = new Thread(() -> {
try {
s.acquire();
System.out.println("t2 结束");
s.release();
} catch (InterruptedException e) {
e.printStackTrace();
}
}, "t2");
t1.start();
}
}
- 写一个固定容量同步容器,拥有put和get方法,以及getCount方法,
- 能够支持2个生产者线程以及10个消费者线程的阻塞调用
public class MyContainer2<T> {
final private LinkedList<T> lists = new LinkedList<>();
final private int MAX = 10; //最多10个元素
private int count = 0;
private Lock lock = new ReentrantLock();
// Condition本质就是不同的等待队列
private Condition producer = lock.newCondition();
private Condition consumer = lock.newCondition();
public void put(T t) {
try {
lock.lock();
while(lists.size() == MAX) { //想想为什么用while而不是用if?
producer.await();
}
lists.add(t);
++count;
consumer.signalAll(); //通知消费者线程进行消费
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
public T get() {
T t = null;
try {
lock.lock();
while(lists.size() == 0) {
consumer.await();
}
t = lists.removeFirst();
count --;
producer.signalAll(); //通知生产者进行生产
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
lock.unlock();
}
return t;
}
public static void main(String[] args) {
MyContainer2<String> c = new MyContainer2<>();
//启动消费者线程
for(int i=0; i<10; i++) {
new Thread(()->{
for(int j=0; j<5; j++) System.out.println(c.get());
}, "c" + i).start();
}
try {
TimeUnit.SECONDS.sleep(2);
} catch (InterruptedException e) {
e.printStackTrace();
}
//启动生产者线程
for(int i=0; i<2; i++) {
new Thread(()->{
for(int j=0; j<25; j++) c.put(Thread.currentThread().getName() + " " + j);
}, "p" + i).start();
}
}
}

浙公网安备 33010602011771号