python 迭代器 生成器

1. 迭代器

      迭代器是访问集合元素的一种方式。迭代器对象从集合的第一个元素开始访问,知道所有的元素被访问完结束。迭代器只能往前不会后退,不过这也没什么,因为人们很少在迭代途中往后退。

1.1 使用迭代器的优点

      对于原生支持随机访问的数据结构(如tuple、list),迭代器和经典for循环的索引访问相比并无优势,反而丢失了索引值(可以使用内建函数enumerate()找回这个索引值)。但对于无法随机访问的数据结构(比如set)而言,迭代器是唯一的访问元素的方式。

      另外,迭代器的一大优点是不要求事先准备好整个迭代过程中所有的元素。迭代器仅仅在迭代到某个元素时才计算该元素,而在这之前或之后,元素可以不存在或者被销毁。这个特点使得它特别适合用于遍历一些巨大的或是无限的集合,比如几个G的文件,或是斐波那契数列等等。

      迭代器更大的功劳是提供了一个统一的访问集合的接口,只要定义了__iter__()方法对象,就可以使用迭代器访问。

迭代器有两个基本的方法

  • next方法:返回迭代器的下一个元素
  • __iter__方法:返回迭代器对象本身

下面用生成斐波那契数列为例子,说明为何用迭代器

代码1

 def fab(max): 
    n, a, b = 0, 0, 1 
    while n < max: 
        print b 
        a, b = b, a + b 
        n = n + 1

直接在函数fab(max)中用print打印会导致函数的可复用性变差,因为fab返回None。其他函数无法获得fab函数返回的数列。

代码2

 def fab(max): 
    L = []
    n, a, b = 0, 0, 1 
    while n < max: 
        L.append(b) 
        a, b = b, a + b 
        n = n + 1
    return L

代码2满足了可复用性的需求,但是占用了内存空间,最好不要。

代码3

对比

 for i in range(1000): pass
 for i in xrange(1000): pass

前一个返回1000个元素的列表,而后一个在每次迭代中返回一个元素,因此可以使用迭代器来解决复用可占空间的问题

 class Fab(object): 
    def __init__(self, max): 
        self.max = max 
        self.n, self.a, self.b = 0, 0, 1 

    def __iter__(self): 
        return self 

    def next(self): 
        if self.n < self.max: 
            r = self.b 
            self.a, self.b = self.b, self.a + self.b 
            self.n = self.n + 1 
            return r 
        raise StopIteration()

执行

>>> for key in Fabs(5):
	print key

	
1
1
2
3
5

Fabs 类通过 next() 不断返回数列的下一个数,内存占用始终为常数  

1.2 使用迭代器

使用内建的工厂函数iter(iterable)可以获取迭代器对象:

>>> lst = range(5)
>>> it = iter(lst)
>>> it
<listiterator object at 0x01A63110>

使用next()方法可以访问下一个元素:

>>> it.next()
0
>>> it.next()
1
>>> it.next()
2

python处理迭代器越界是抛出StopIteration异常

>>> it.next()
3
>>> it.next
<method-wrapper 'next' of listiterator object at 0x01A63110>
>>> it.next()
4
>>> it.next()

Traceback (most recent call last):
  File "<pyshell#27>", line 1, in <module>
    it.next()
StopIteration

了解了StopIteration,可以使用迭代器进行遍历了

lst = range(5)
it = iter(lst)
try:
    while True:
        val = it.next()
        print val
except StopIteration:
    pass

结果

>>> 
0
1
2
3
4

事实上,因为迭代器如此普遍,python专门为for关键字做了迭代器的语法糖。在for循环中,Python将自动调用工厂函数iter()获得迭代器,自动调用next()获取元素,还完成了检查StopIteration异常的工作。如下

>>> a = (1, 2, 3, 4)
>>> for key in a:
    print key

    
1
2
3
4

首先python对关键字in后的对象调用iter函数迭代器,然后调用迭代器的next方法获得元素,直到抛出StopIteration异常。

1.3 定义迭代器

下面一个例子——斐波那契数列

# -*- coding: cp936 -*-
class Fabs(object):
    def __init__(self,max):
        self.max = max
        self.n, self.a, self.b = 0, 0, 1  #特别指出:第0项是0,第1项是第一个1.整个数列从1开始
    def __iter__(self):
        return self
    def next(self):
        if self.n < self.max:
            r = self.b
            self.a, self.b = self.b, self.a + self.b
            self.n = self.n + 1
            return r
        raise StopIteration()

print Fabs(5)
for key in Fabs(5):
    print key
    

结果

<__main__.Fabs object at 0x01A63090>
1
1
2
3
5

 

2. 生成器

      带有 yield 的函数在 Python 中被称之为 generator(生成器),几个例子说明下(还是用生成斐波那契数列说明)

可以看出代码3远没有代码1简洁,生成器(yield)既可以保持代码1的简洁性,又可以保持代码3的效果

代码4 

def fab(max):
    n, a, b = 0, 0, 1
    while n < max:
        yield b
        a, b = b, a + b
        n = n + 1

执行

>>> for n in fab(5):
	print n

	
1
1
2
3
5

      简单地讲,yield 的作用就是把一个函数变成一个 generator,带有 yield 的函数不再是一个普通函数,Python 解释器会将其视为一个 generator,调用 fab(5) 不会执行 fab 函数,而是返回一个 iterable 对象!在 for 循环执行时,每次循环都会执行 fab 函数内部的代码,执行到 yield b 时,fab 函数就返回一个迭代值,下次迭代时,代码从 yield b 的下一条语句继续执行,而函数的本地变量看起来和上次中断执行前是完全一样的,于是函数继续执行,直到再次遇到 yield。看起来就好像一个函数在正常执行的过程中被 yield 中断了数次,每次中断都会通过 yield 返回当前的迭代值。

也可以手动调用 fab(5) 的 next() 方法(因为 fab(5) 是一个 generator 对象,该对象具有 next() 方法),这样我们就可以更清楚地看到 fab 的执行流程:

>>> f = fab(3)
>>> f.next()
1
>>> f.next()
1
>>> f.next()
2
>>> f.next()

Traceback (most recent call last):
  File "<pyshell#62>", line 1, in <module>
    f.next()
StopIteration

return作用

在一个生成器中,如果没有return,则默认执行到函数完毕;如果遇到return,如果在执行过程中 return,则直接抛出 StopIteration 终止迭代。例如

>>> s = fab(5)
>>> s.next()
1
>>> s.next()

Traceback (most recent call last):
  File "<pyshell#66>", line 1, in <module>
    s.next()
StopIteration

代码5  文件读取

 def read_file(fpath): 
    BLOCK_SIZE = 1024 
    with open(fpath, 'rb') as f: 
        while True: 
            block = f.read(BLOCK_SIZE) 
            if block: 
                yield block 
            else: 
                return

如果直接对文件对象调用 read() 方法,会导致不可预测的内存占用。好的方法是利用固定长度的缓冲区来不断读取文件内容。通过 yield,我们不再需要编写读文件的迭代类,就可以轻松实现文件读取。

3. 参考

Python函数式编程指南(三):迭代器

Python yield 使用浅析

 

posted @ 2014-07-06 12:12  jihite  阅读(41500)  评论(6编辑  收藏  举报