python航空公司客戶流失預測
import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签 plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号 import warnings warnings.filterwarnings('ignore') from scipy import stats from sklearn.preprocessing import StandardScaler from imblearn.over_sampling import SMOTE from sklearn.model_selection import train_test_split, cross_val_score, GridSearchCV, KFold from sklearn.feature_selection import RFE from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn.ensemble import RandomForestClassifier, VotingClassifier, ExtraTreesClassifier import xgboost as xgb from sklearn import metrics import prettytable data = pd.read_csv('E:/桌面/data/WA_Fn-UseC_-Telco-Customer-Churn.csv',engine="python") data.head().T data.drop("customerID", axis=1, inplace=True) # 转换成连续型变量 data['TotalCharges'] = pd.to_numeric(data.TotalCharges, errors='coerce') # 查看是否存在缺失值 data['TotalCharges'].isnull().sum() # 查看缺失值分布 data.loc[data['TotalCharges'].isnull()].T data.query("tenure == 0").shape[0] data = data.query("tenure != 0") # 重置索引 data = data.reset_index().drop('index',axis=1) # 查看各类别特征频数 for i in data.select_dtypes(include="object").columns: print(data[i].value_counts()) print('-'*50) data.Churn = data.Churn.map({'No':0,'Yes':1}) fig, ax= plt.subplots(nrows=2, ncols=3, figsize = (20,8)) for i, feature in enumerate(['tenure','MonthlyCharges','TotalCharges']): data.loc[data.Churn == 1, feature].hist(ax=ax[0][i], bins=30) data.loc[data.Churn == 0, feature].hist(ax=ax[1][i], bins=30, ) ax[0][i].set_xlabel(feature+' Churn=0') ax[1][i].set_xlabel(feature+' Churn=1') plt.title("3118")
data['TotalCharges_diff'] = data.tenure * data.MonthlyCharges - data.TotalCharges def func(x): if x > 0: res = 2 # 2表示月费增加 elif x == 0: res = 1 # 1表示月费持平 else: res = 0 # 0表示月费减少 return res data['TotalCharges_diff1'] = data['TotalCharges_diff'].apply(lambda x:func(x)) data.drop('TotalCharges_diff', axis=1, inplace=True) data['tenure'] = pd.qcut(data['tenure'], q=5, labels=['tenure_'+str(i) for i in range(1,6)]) data['MonthlyCharges'] = pd.qcut(data['MonthlyCharges'], q=5, labels=['MonthlyCharges_'+str(i) for i in range(1,6)]) data['TotalCharges'], _ = stats.boxcox(data['TotalCharges']) X = data[data.columns.drop('Churn')] y = data.Churn # 生成哑变量 X = pd.get_dummies(X) # 标准化 scaler = StandardScaler() scale_data = scaler.fit_transform(X) X = pd.DataFrame(scale_data, columns = X.columns) y.value_counts() model_smote = SMOTE(random_state=10) # 建立SMOTE模型对象 X_smote, y_smote = model_smote.fit_resample(X, y) y_smote.value_counts() X_smote.shape[1] # etc = ExtraTreesClassifier(random_state=9) # ExtraTree,用于EFE的模型对象 # selector = RFE(etc, 30) # selected_data = selector.fit_transform(X_smote, y_smote) # 训练并转换数据 # X_smote = pd.DataFrame(selected_data, columns = X_smote.columns[selector.get_support()]) X_train, X_test, y_train, y_test = train_test_split(X_smote, y_smote, stratify=y_smote, random_state=11) # 交叉验证输出f1得分 def score_cv(model, X, y): kfold = KFold(n_splits=5, random_state=42, shuffle=True) f1 = cross_val_score(model, X, y, scoring='f1', cv=kfold).mean() return f1 # 网格搜索 def gridsearch_cv(model, test_param, cv=5): gsearch = GridSearchCV(estimator=model, param_grid=test_param, scoring='f1', n_jobs=-1, cv=cv) gsearch.fit(X_train, y_train) print('Best Params: ', gsearch.best_params_) print('Best Score: ', gsearch.best_score_) return gsearch.best_params_ # 输出预测结果及混淆矩阵等相关指标 def model_pred(model): model.fit(X_train, y_train) pred = model.predict(X_test) print('test f1-score: ', metrics.f1_score(y_test, pred)) print('-' * 50) print('classification_report \n', metrics.classification_report(y_test, pred)) print('-' * 50) tn, fp, fn, tp = metrics.confusion_matrix(y_test, pred).ravel() # 获得混淆矩阵 confusion_matrix_table = prettytable.PrettyTable(['', 'actual-1', 'actual-0']) # 创建表格实例 confusion_matrix_table.add_row(['prediction-1', tp, fp]) # 增加第一行数据 confusion_matrix_table.add_row(['prediction-0', fn, tn]) # 增加第二行数据 print('confusion matrix \n', confusion_matrix_table) lr = LogisticRegression(random_state=10) lr_f1 = score_cv(lr, X_train, y_train) lr_f1 model_pred(lr)
import pandas as pd import numpy as np import matplotlib.pyplot as plt datafile='E:/桌面/air_data.csv' resultfile='E:/桌面/data/explore.csv' data=pd.read_csv(datafile,encoding='utf-8',engine='python') explore=data.describe(percentiles=[],include='all').T explore['null']=len(data)-explore['count'] explore=explore[['null','max','min']] explore.columns=[u'空值数',u'最大值',u'最小值'] explore.to_csv(resultfile) from datetime import datetime ffp=data['FFP_DATE'].apply(lambda x:datetime.strptime(x,'%Y/%m/%d')) ffp_year=ffp.map(lambda x:x.year) fig=plt.figure(figsize=(8,5)) plt.rcParams['font.sans-serif']='SimHei' plt.rcParams['axes.unicode_minus']=False plt.hist(ffp_year,bins='auto',color='#0504aa') plt.xlabel('年份') plt.ylabel('入会人数') plt.title('各年份会员入会人数3118') plt.show() plt.close
male=pd.value_counts(data['GENDER'])['男'] female=pd.value_counts(data['GENDER'])['女'] fig=plt.figure(figsize=(7,4)) plt.pie([male,female],labels=['男','女'],colors=['lightskyblue','lightcoral'],autopct='%1.1f%%') plt.title('会员性别比例3118') plt.show() plt.close
lv_four = pd.value_counts(data['FFP_TIER'])[4] lv_five = pd.value_counts(data['FFP_TIER'])[5] lv_six = pd.value_counts(data['FFP_TIER'])[6] fig = plt.figure(figsize=(8,5)) plt.bar(x=range(3), height=[lv_four,lv_five,lv_six], width=0.4, alpha=0.8, color='skyblue') plt.xticks([index for index in range(3)], ['4','5','6']) plt.xlabel('会员等级') plt.ylabel('会员人数') plt.title('3118',fontsize=20) plt.show() plt.close
age = data['AGE'].dropna() age = age.astype('int64') fig = plt.figure(figsize=(5,10)) plt.boxplot(age, patch_artist=True, labels=['会员年龄'], boxprops={'facecolor':'lightblue'}) plt.title('3118',fontsize=20) plt.grid(axis='y') plt.show() plt.close
lte=data['LAST_TO_END'] fc=data['FLIGHT_COUNT'] sks=data['SEG_KM_SUM'] fig=plt.figure(figsize=(5,8)) plt.boxplot(lte,patch_artist=True,labels=['时长'],boxprops={'facecolor':'lightblue'}) plt.title('会员最后乘机至结束时长分布箱型图3118') plt.grid(axis='y') plt.show() plt.close
fig=plt.figure(figsize=(5,8)) plt.boxplot(fc,patch_artist=True,labels=['飞行次数'],boxprops={'facecolor':'lightblue'}) plt.title('会员飞行次数分布箱型图3118') plt.grid(axis='y') plt.show() plt.close
fig=plt.figure(figsize=(5,8)) plt.boxplot(sks,patch_artist=True,labels=['总飞行公里数数'],boxprops={'facecolor':'lightblue'}) plt.title('客户总飞行公里数分布箱型图3118') plt.grid(axis='y') plt.show() plt.close
ps = data['Points_Sum'] fig = plt.figure(figsize=(5,8)) plt.boxplot(ps, patch_artist=True, labels=['总累计积分'], boxprops={'facecolor':'lightblue'}) plt.title('3118',fontsize=20) plt.grid(axis='y') plt.show() plt.close
data_corr = data[['FFP_TIER','FLIGHT_COUNT','LAST_TO_END','SEG_KM_SUM','EXCHANGE_COUNT','Points_Sum']] age1 = data['AGE'].fillna(0) data_corr['AGE'] = age1.astype('int64') data_corr['ffp_year'] = ffp_year dt_corr = data_corr.corr(method='pearson') print('相关性矩阵为:\n',dt_corr)
import seaborn as sns plt.subplots(figsize=(10,10)) sns.heatmap(dt_corr,annot=True,vmax=1,square=True,cmap='Blues') plt.title("3118") plt.show() plt.close
airline_data = pd.read_csv('E:/桌面/air_data.csv',engine="python") resultfile = 'E:/桌面/data/data_cleaned.csv' airline_notnull = airline_data.loc[airline_data['SUM_YR_1'].notnull() & airline_data['SUM_YR_2'].notnull(),:] index1 = airline_notnull['SUM_YR_1'] != 0 index2 = airline_notnull['SUM_YR_2'] != 0 index3 = (airline_notnull['SEG_KM_SUM'] > 0) & (airline_notnull['avg_discount'] != 0) index4 = airline_notnull['AGE'] > 100 airline = airline_notnull[(index1 | index2) & index3 & ~index4] airline.to_csv(resultfile) airline = pd.read_csv('E:/桌面/data/data_cleaned.csv',engine="python") airline_selection = airline[['FFP_DATE','LOAD_TIME','LAST_TO_END','FLIGHT_COUNT','SEG_KM_SUM','avg_discount']] print('筛选的属性前5行为:\n',airline_selection.head())
L = pd.to_datetime(airline_selection['LOAD_TIME']) - pd.to_datetime(airline_selection['FFP_DATE']) L = L.astype('str').str.split().str[0] L = L.astype('int')/30 # L = L.astype('str') airline_features = pd.concat([L,airline_selection.iloc[:,2:]], axis=1) airline_features.columns = airline_features.columns.astype(str) print('构建的LRFMC属性前5行为:\n',airline_features.head())
from sklearn.preprocessing import StandardScaler data = StandardScaler().fit_transform(airline_features) np.savez('E:/桌面/data/airline_scale.npz',data) print('标准化后LRFMC 5个属性为:\n',data[:5,:])
from sklearn.cluster import KMeans airline_scale = np.load('E:/桌面/data/airline_scale.npz')['arr_0'] k = 5 kmeans_model = KMeans(n_clusters=k, random_state=123) fit_kmeans = kmeans_model.fit(airline_scale) kmeans_cc = kmeans_model.cluster_centers_ kmeans_labels = kmeans_model.labels_ r1 = pd.Series(kmeans_model.labels_).value_counts() cluster_center = pd.DataFrame(kmeans_model.cluster_centers_,columns=['ZL','ZR','ZF','ZM','ZC']) cluster_center.index = pd.DataFrame(kmeans_model.labels_).drop_duplicates().iloc[:,0] print(cluster_center) #%matplotlib inline labels = ['ZL','ZR','ZF','ZM','ZC'] # labels = labels.append('ZL') legen = ['客户群' + str(i + 1) for i in cluster_center.index] lstype = ['-','--',(0,(3,5,1,5,1,5)),':','-.'] kinds = list(cluster_center.iloc[:,0]) cluster_center = pd.concat([cluster_center,cluster_center[['ZL']]], axis=1) centers = np.array(cluster_center.iloc[:,0:]) n = len(labels) angle = np.linspace(0, 2*np.pi, n, endpoint=False) # print([angle[0]]) angle = np.concatenate((angle, [angle[0]])) labels = np.concatenate((labels, [labels[0]])) fig = plt.figure(figsize=(8,6)) ax = fig.add_subplot(111,polar=True) plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False print(cluster_center) print(centers) print(angle) for i in range(len(kinds)): ax.plot(angle, centers[i], linestyle=lstype[i], linewidth=2, label=kinds[i]) # ax.plot(angle, centers, linestyle=lstype[i], linewidth=2, label=kinds[i]) ax.set_thetagrids(angle*180/np.pi,labels) plt.title('3118',fontsize=20) plt.legend(legen) plt.show() plt.close