2023/3/5python预测模型
import numpy as np import pandas as pd
from sklearn.linear_model import Lasso inputfile ='E:/桌面/data.csv' data = pd.read_csv(inputfile,engine='python') lasso = Lasso(1000) lasso.fit(data.iloc[:,0:13],data['y']) print('相关系数为:',np.round(lasso.coef_,5)) print('相关系数非零个数为:',np.sum(lasso.coef_ != 0)) mask = lasso.coef_ != 0 print('相关系数是否为零:',mask) outputfile ='new_reg_data.csv' mask = np.append(mask,True) new_reg_data = data.iloc[:, mask] new_reg_data.to_csv(outputfile) print('输出数据的维度为:',new_reg_data.shape)
import numpy as np import pandas as pd
from GM11 import GM11
inputfile1 = 'new_reg_data.csv' inputfile2 = 'E:/桌面/data.csv' new_reg_data = pd.read_csv(inputfile1) data = pd.read_csv(inputfile2,engine='python') new_reg_data.index = range(1994,2014) new_reg_data.loc[2014] = None new_reg_data.loc[2015] = None cols = ['x1','x3','x4','x5','x6','x7','x8','x13','y'] for i in cols: f = GM11(new_reg_data.loc[range(1994,2014),i].values)[0] new_reg_data.loc[2014,i] = f(len(new_reg_data)-1) new_reg_data.loc[2015,i] = f(len(new_reg_data)) new_reg_data[i] = new_reg_data[i].round(2) outputfile = 'new_reg_data_GM11.xls' y = list(data['y'].values) y.extend([np.nan,np.nan]) new_reg_data['y'] = y new_reg_data.to_excel(outputfile) print('预测结果为:\n',new_reg_data.loc[2014:2015,:])
import matplotlib.pyplot as plt from sklearn.svm import LinearSVR inputfile = "new_reg_data_GM11.xls" # 灰色预测后保存的路径 data = pd.read_excel(inputfile) # 读取数据 feature = ['x1', 'x3', 'x4', 'x5', 'x6', 'x7', 'x8', 'x13'] # 属性所在列 data.index = range(1994, 2016) data_train = data.loc[range(1994, 2014)].copy() # 取2014年前的数据建模 data_mean = data_train.mean() data_std = data_train.std() data_train = (data_train - data_mean)/data_std # 数据标准化 x_train = data_train[feature].values # 属性数据 y_train = data_train['y'].values # 标签数据 linearsvr = LinearSVR() # 调用LinearSVR()函数 linearsvr.fit(x_train,y_train) x = ((data[feature] - data_mean[feature])/data_std[feature]).values data['y_pred'] = linearsvr.predict(x) * data_std['y'] + data_mean['y'] outputfile ="new_reg_data_GM11_revenue.xls" # SVR预测后保存的结果 data.to_excel(outputfile) print('真实值与预测值分别为:\n',data[['y','y_pred']][14:22]) fig = data[['y','y_pred']].plot(subplots = True, style=['b-o','r-*']) # 画出预测结果图 plt.rcParams['font.sans-serif'] = ['SimHei'] plt.title('学号3118') plt.show()