package LeetCode_918
/**
* 918. Maximum Sum Circular Subarray
* https://leetcode.com/problems/maximum-sum-circular-subarray/
* Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array.
(Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once.
(Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
1. -30000 <= A[i] <= 30000
2. 1 <= A.length <= 30000
* */
class Solution {
/*
* solution: base in get maximum in sub-array,
* maximum in circular: max(max sub-array sum, total sum - min sub-array sum).
* Prove this case:
max(prefix+suffix)
= max(total sum - subarray)
= total sum + max(-subarray)
= total sum - min(subarray)
* Time:O(n), Space:O(1)
* */
fun maxSubarraySumCircular(A: IntArray): Int {
var currentMax = 0
var currentMin = 0
var maxSum = Int.MIN_VALUE
var minSum = Int.MAX_VALUE
var total = 0
for (item in A) {
currentMax = Math.max(item, currentMax + item)
maxSum = Math.max(maxSum, currentMax)
currentMin = Math.min(item, currentMin + item)
minSum = Math.min(minSum, currentMin)
total += item
}
//if maxSum<=0 need return maxSum, case: [-2,-3,-1]
return if (maxSum > 0) Math.max(maxSum, total - minSum) else maxSum
}
}