package LeetCode_377
/**
* 377. Combination Sum IV
* https://leetcode.com/problems/combination-sum-iv/description/
*
* Given an integer array with all positive numbers and no duplicates, find the number of possible combinations that add up to a positive integer target.
Example:
nums = [1, 2, 3]
target = 4
The possible combination ways are:
(1, 1, 1, 1)
(1, 1, 2)
(1, 2, 1)
(1, 3)
(2, 1, 1)
(2, 2)
(3, 1)
Note that different sequences are counted as different combinations. Therefore the output is 7.
Follow up:
What if negative numbers are allowed in the given array?
How does it change the problem?
What limitation we need to add to the question to allow negative numbers?
* */
class Solution {
private var result = 0
private var array: Array<Int>? = null
fun combinationSum4(nums: IntArray, target: Int): Int {
//1. recursion
//help(nums, target)
//2. recursion + memorization
/*array = Array(target + 1, { -1 })
array?.set(0, 1)
return help2(nums, target)*/
//3. dp
return dp(nums, target)
}
/*
* method 1: recursion
* Time complexity: O(2^target), Space complexity: O(1);
* TLE, 11/17 test cases passed
* */
private fun help(nums: IntArray, target: Int) {
if (target == 0) {
result += 1
}
if (target < 0) {
return
}
for (num in nums) {
help(nums, target - num)
}
}
/*
* method 2: recursion + memorization
* Time complexity: O(sum({target/num_i})), Space complexity: O(target)
* */
private fun help2(nums: IntArray, target: Int): Int {
if (target < 0) {
return 0
}
if (array!![target] != -1) {
return array!![target]
}
var res = 0
for (num in nums) {
res += help2(nums, target - num)
}
array!![target] = res
return res
}
/*
* method 3:dp
* Time complexity: O(target * n), Space complexity: O(target)
* */
private fun dp(nums: IntArray, target: Int): Int {
//dp[i] represent number of combinations sum up to i
val dp = Array(target + 1, { 0 })
dp[0] = 1//there are is 1 combination sum up to 0
for (i in 1..target) {
for (num in nums) {
if (i - num >= 0) {
dp[i] += dp[i - num]
}
}
}
return dp[target]
}
}