群论习题乱做

有一些在课上做过了就没放(而且都还是*题,拿来入门,难顶....)

当然后来再补也说不定。拿不准的翻译就照抄原文。

\(G\)\(n\)阶有限群,\(S\)\(G\)的子集,且\(2|S|>|G|\),试证明\(\forall a\in G\)\(\exists b,c\in S\)使得\(a=bc\)

这题有点巧妙。注意到\(S\subseteq G\),我们构造\(T=\left\{x^{-1}|x\in S\right\}\),则任意取\(a\in G\),构造\(aT=\left\{ax^{-1}|x\in S\right\}\subseteq G\)。又因为\(|aT|+|S|>|G|\)\(aT\cup S\subseteq G\),所以\(aT\cap S\neq \varnothing\)

\(\exists d\in T, b\in S\)使得\(ad=b\),即\(a=bd^{-1}\),这里\(d^{-1}\in S\)

证明:\(b\)是含幺半群\(G\)中的元\(a\)的逆元当且仅当\(aba=a,ab^2a=1\)

\(aba=a\)两侧同时左乘\(ab^2\)得到\(ab^2aba=(ab^2a)ba=ba=1\)

\(aba=a\)两侧同时右乘\(b^2a\)得到\(abab^2a=ab^2a=ab=1\)

\(ab=ba=1\)\(b\)\(a\)的逆元

\(G\)\(n\)阶有限群,从中任取出\(n\)个元素\(a_1,a_2,\dots,a_n\),不一定两两不同。证明:存在正整数\(1\le p\le q\le n\)使得\(\prod\limits_{i=p}^{q}{a_i}=1\)

不妨从\(G\)中再任意取出一个元素\(a_{0}\),构造\(s_k=\prod\limits_{i=0}^{k}{a_i}\),易得\(\forall 0\le k\le n\)都有\(s_k\in G\)

\(|G|=n\le n+1\),则根据鸽笼原理,\(s_0,s_1,\dots,s_n\)\(n+1\)个数中必有两个相等,不妨记作\(s_u\)\(s_v\),其中\(0\le u< v\le n\),则\(s_v{s_u}^{-1}=\prod\limits_{i=u+1}^{v}{a_i}=1\),此时的\(p,q\)恰好为\(u+1,v\)

证明:已知\(\gcd(n,m)=1\),若有限群\(G\)\(\exists a\)使得\(a^n=e\),则\(\exists b\in G\)使得\(b^m=e\)

裴蜀定理:\(\gcd(n,m)=1\iff sm+tn=1\)有整数解

那么\(e=a^{sm+tn}=a^{sm}a^{tn}={\left(a^s\right)}^{m}{\left(a^n\right)}^t={\left(a^s\right)}^{m}\)

\(b=a^s\)就好了

\(\left\{A,B\right\}\)是半群\(S\)的一个划分,且\(\forall a,b,c\in A\)都有\(abc\in A\)\(\forall a,b,c\in B\)都有\(abc\in B\)。证明:\(A,B\)至少有一个是半群

由反证法,不妨假设\(\exists a_1,a_2\in A\and \exists b_1,b_2\in B\)使得\(a_1a_2\in B\and b_1b_2\in A\)

于是\(a_1a_2b_1b_2=(a_1a_2)b_1b_2=a_1a_2(b_1b_2)\),分属于两个不交的集合,于是矛盾;

\(A\le G,B\le G\) ,若\(\exists a,b\in G\)使得\(Aa=Bb\),则\(A=B\)

\(Aa=Bb\Rightarrow Aab^{-1}=B\)

因为\(e\in B\),所以\(ba^{-1}\in A\),所以\({\left({ba^{-1}}\right)}^{-1}=ab^{-1}\in A\)

所以\(Aab^{-1}=A=B\)得证

\(A,B\le G\),试证\(AB\le G\iff AB=BA\)

先证明\(\Leftarrow\)

单位元和结合律比较显然

逆元:且\(x\in AB\iff \exists a\in A,b\in B\)使得\(x=ab\),则\(x^{-1}=b^{-1}a^{-1}\in BA=AB\)

封闭性:若\(x=ab\in AB,y=cd\in AB\),则\(xy=abcd=b'a'cd=b'(a'c)d=(a'c)(b'd)\in AB\)

再证明\(\Rightarrow\)

\(AB\le G\)可知,\(ab\in AB\Rightarrow (ab)^{-1}\in AB\)

\((ab)^{-1}=b^{-1}a^{-1}\in BA\),这说明\(\forall (ab)^{-1}\in AB\)\((ab)^{-1}\in BA\),即\(AB\subseteq BA\)

另一方面,\(\forall ba\in BA\)\((ba)^{-1}=a^{-1}b^{-1}\),即\(\forall (ba)^{-1}\in BA\)\((ba)^{-1}\in AB\),即\(BA\subseteq AB\)

也就是说\(AB=BA\)

\(A,B\le G\)\(AB=G\)\(A\le C\le G\),证明\(C=A(B\cap C)\)

这个技法貌似比较有用,要多学学

首先\(A(B\cap C)\subseteq C\)比较简单:

\(\forall x\in A(B\cap C)\) ,都\(\exists a\in A,\exists b\in (B\cap C)\)使得\(x=ab\)

因为\(b\in B\) ,所以\(ab\in AB=G\);因为\(b\in C\),所以\(ab\in AC=C\),综合就有\(ab\in (AB\cap AC)=(G\cap C)=C\),于是\(A(B\cap C)\subseteq C\)

再证明\(C\subseteq A(B\cap C)\)

\(G=AB\)可得\(\forall c\in C\)\(\exists a\in A,\exists b\in B\)使得\(c=ab\)

\(b=a^{-1}c\)

\(b\in B\)\(a^{-1}c\in C\)可知\(b\in (B\cap C)\),即\(c=ab\in A(B\cap C)\)

也就证明了\(C\subseteq A(B\cap C)\)

\(A,B\subseteq G\)\(|A|+|B|>|G|\),求证\(G=AB\)

类似第一题,考虑\(\forall g\in G, gA^{-1}\cap B\neq \varnothing\)就好了

已知\(H\le G\)\(K\le G\),则\([G\colon H]\)有限\(\Rightarrow [G\cap K\colon H\cap K]=[K\colon H\cap K]\)有限

我们构造 \(f:k(K\cap H)\mapsto kH\), \(k\in K\),然后证明这是一个\(L_{K\cap H}(K)\)\(L_{H}(G)\)的单射

先证明这是一个映射:

\(\forall k_1,k_2\in K\)

如果 \(k_1(K\cap H)=k_2(K\cap H)\), 那么有 \(k_1\in k_2(K\cap H)\),也就是\(\exists h\in (K\cap H)\) 使得 \(k_1=k_2h\)

又因为\(h\in (K\cap H)\), \(h\in H\),所以 \(k_1=k_2h\in k_2H\)

\(k_1(K\cap H)=k_2(K\cap H)\Rightarrow k_1H=k_2H\),说明\(f\)是一个映射

然后证明\(f\)是单射:

\(\forall k_1,k_2\in K\), \(k_1(K\cap H)\neq k_2(K\cap H)\)

\(k_1(K\cap H)\neq k_2(K\cap H)\) 可知,\(\exists h_1\in (K\cap H)\) 使得 \(\forall h_2\in (K\cap H)\) , \(k_1h_1\neq k_2h_2\)

我们猜测 对于同一个\(h_1\)\(k_1h_1\neq k_2h_3\) 对任意的 \(h_3\in H\) 成立,并由此证明 \(k_1H\neq k_2H\)

不妨假设 \(\exists h_3\in H\) 使得 \(k_2h_3=k_1h_1\), 于是有 \(h_3={k_2}^{-1}k_1h_1\). 观察到 \({k_2}^{-1}, k_1, h_1\) 都在 \(K\)中, \(h_3\) 也一定在 \(K\)中,即\(h_3\in (H\cap K)\),这和条件(\(\forall h_2\in (H\cap K)\)都有\(k_1h_1\neq k_2h_2\))矛盾;

于是通过证明 \(\forall k_1,k_2\in K\) , \(k_1(K\cap H)\neq k_2(K\cap H)\Rightarrow k_1H\neq k_2H\),我们就证明了 \(f\) 是一个单射,且 \(|L_{K\cap H}(K)|\le |L_{H}(G)|\),也就是 \(\left[G\colon H\right]\in \N^+\Rightarrow \left[K\colon K\cap H\right]\in\N^+\)

\(G\)\(H\)有一个同态\(f\),则\(\forall g\in G\)\(ord(f(g))\mid ord(g)\)

很显然\(g^{ord(g)}=1\),两边取\(f\)就有\(f(g^{ord(g)})=f(1)={f(g)}^{ord(g)}\),也就是\(ord(f(g))\mid ord(g)\)

\((|G|,|H|)=1\),则\(G\)\(H\)的同态只有\(f:x\mapsto e\)

由上面可知\(\forall g\in G\)\(ord(f(G))\mid ord(G)\mid|G|\),又\(ord(f(g))\mid |H|\),故\(ord(f(g))=1\),即\(f(g)=e\)

if \(A\subseteq G,B\subseteq G\), \(|A|+|B|>|G|\), prove \(G=AB\)

since \(|A|+|B|>|G|\), we have \(A\cap B\neq\varnothing\)

\(\forall g\in G\), \(|A^{-1}g|=|A^{-1}|=|A|\)

thus \(A^{-1}g\subseteq G\), \(B\subseteq G\), \(|A^{-1}g|+|B|>|G|\)

\(A^{-1}g\cap B\neq\varnothing\), assume \(x\in \left({A^{-1}g\cap B}\right)\), there \(\exists a\in A\) and \(b\in B\) s.t. \(x=a^{-1}g=b\), which means \(g=ab\), that is, \(G\subseteq AB\)

apparently we have \(AB\subseteq G\), thus \(G=AB\)

\(A\leqslant G\), \(B\leqslant G\), if \(\exists a,b\in G\) s.t. \(Aa=Bb\), then \(A=B\)

\(Aa=Bb\Rightarrow A=B\left({ba^{-1}}\right)\)

we claim \(ba^{-1}\in B\). assume \(ba^{-1}\not\in B\), then \(B\left({ba^{-1}}\right)\cap B=\varnothing\), which leads to \(e\not\in A\), an obvious contradiction

thus \(ba^{-1}\in B\), where \(A=B\left({ba^{-1}}\right)=B\)

posted @ 2021-03-11 23:01  jjppp  阅读(860)  评论(0编辑  收藏  举报