Fractal dimensions on the set $\{0, 1,1/2,\cdots, 1/n, \cdots\}$
Let $X=\{0, 1,1/2,\cdots, 1/n\cdots\}.$ Then, we have $\dim_X E=\dim_P X=0, \dim_B X=1/2$ and $\dim_A X=1.$
Now we will prove that $\dim_AX=1.$
Recall that
\begin{split}
\dim_A X=\inf\Big\{\alpha&\geq 0 \big|\text{there are constants $b,c>0$ satisfying:} \\
&\text{for any $0<r<R<b$, the inequality $N_{r,R}(X)\leq c(\frac{R}{r})^{\alpha}$ holds}\Big\},
\end{split}
where $N_{r,R}(X)$ denotes the smallest number of balls with radii equal to $r$ need to cover any ball with radius equals to $R.$
Take $R_n=1/n, r_n=1/n^2$ with $n\ge 3$. Clearly, $B(0,R_n)\cap X=\{0, 1/n, 1/(n+1)\cdots\}$.
Clearly, $\left(B(0,R_n) \setminus B(0,r_n)\right)\cap X=\{1/(n^2-1), 1/(n^2-2),\cdots, 1/n\}$. For any $i\in \{1/(n^2-1), 1/(n^2-2),\cdots, 1/n\} , $ we have
$$i-(i-1)> r_n=1/n.$$
Therefore,
$$N_{r_n,R_n}(X)\ge 1+((n-1)^2-n+1)=n^2-3n+3\ge n.$$
But $R_n/r_n=n.$ So, $N_{r_n,R_n}(X)\le c (\frac{R}{r})^{\alpha}$ cann't hold for any $\alpha<1$, which implies that $\dim_A X=1.$
Remark: the centers of the balls $B(x,r_n)$ should be in $X$!
浙公网安备 33010602011771号