[Tensorflow] Object Detection API - mobileNet_v1.py

故事背景


一、课前感言

How to retrain your own mobileNet. Let's do it.

本篇重点在实践。

 

 

二、CNN 代码

  • mobileNet_v1代码

Where is the code of mobileNet?

Link: https://github.com/tensorflow/models/tree/master/research/slim/nets

 

Let's start from in mobilenet_v1.py.

def mobilenet_v1(inputs,
                 num_classes=1000,
                 dropout_keep_prob=0.999,
                 is_training=True,
                 min_depth=8,
                 depth_multiplier=1.0,
                 conv_defs=None,
                 prediction_fn=tf.contrib.layers.softmax,
                 spatial_squeeze=True,
                 reuse=None,
                 scope='MobilenetV1'):
"""Mobilenet v1 model for classification. Args: inputs: a tensor of shape [batch_size, height, width, channels]. num_classes: number of predicted classes. dropout_keep_prob: the percentage of activation values that are retained. is_training: whether is training or not. min_depth: Minimum depth value (number of channels) for all convolution ops. Enforced when depth_multiplier < 1, and not an active constraint when depth_multiplier >= 1. depth_multiplier: Float multiplier for the depth (number of channels) for all convolution ops. The value must be greater than zero. Typical usage will be to set this value in (0, 1) to reduce the number of parameters or computation cost of the model. conv_defs: A list of ConvDef namedtuples specifying the net architecture. prediction_fn: a function to get predictions out of logits. spatial_squeeze: if True, logits is of shape is [B, C], if false logits is of shape [B, 1, 1, C], where B is batch_size and C is number of classes. reuse: whether or not the network and its variables should be reused. To be able to reuse 'scope' must be given. scope: Optional variable_scope. Returns: logits: the pre-softmax activations, a tensor of size [batch_size, num_classes] end_points: a dictionary from components of the network to the corresponding activation. Raises: ValueError: Input rank is invalid. """

input_shape = inputs.get_shape().as_list() if len(input_shape) != 4: raise ValueError('Invalid input tensor rank, expected 4, was: %d' % len(input_shape)) with tf.variable_scope(scope, 'MobilenetV1', [inputs, num_classes], reuse=reuse) as scope: with slim.arg_scope([slim.batch_norm, slim.dropout], is_training=is_training): net, end_points = mobilenet_v1_base(inputs, scope=scope, min_depth=min_depth, depth_multiplier=depth_multiplier, conv_defs=conv_defs)  # main part of Graph. ----> 详见下文 with tf.variable_scope('Logits'): kernel_size = _reduced_kernel_size_for_small_input(net, [7, 7]) net = slim.avg_pool2d(net, kernel_size, padding='VALID', scope='AvgPool_1a') end_points['AvgPool_1a'] = net # 1 x 1 x 1024 net = slim.dropout(net, keep_prob=dropout_keep_prob, scope='Dropout_1b') logits = slim.conv2d(net, num_classes, [1, 1], activation_fn=None, normalizer_fn=None, scope='Conv2d_1c_1x1') if spatial_squeeze: logits = tf.squeeze(logits, [1, 2], name='SpatialSqueeze') end_points['Logits'] = logits if prediction_fn: end_points['Predictions'] = prediction_fn(logits, scope='Predictions') return logits, end_points

 

  • 网络定义

以下可见工程化的神经网络定义 in mobilenet_v1.py,谷歌工程能力是毫无疑问的强。

# Conv and DepthSepConv namedtuple define layers of the MobileNet architecture
# Conv defines 3x3 convolution layers
# DepthSepConv defines 3x3 depthwise convolution followed by 1x1 convolution.
# stride is the stride of the convolution
# depth is the number of channels or filters in a layer
Conv = namedtuple('Conv', ['kernel', 'stride', 'depth'])
DepthSepConv = namedtuple('DepthSepConv', ['kernel', 'stride', 'depth'])

# _CONV_DEFS specifies the MobileNet body
_CONV_DEFS = [
    Conv(kernel=[3, 3], stride=2, depth=32),
    DepthSepConv(kernel=[3, 3], stride=1, depth=64),
    DepthSepConv(kernel=[3, 3], stride=2, depth=128),
    DepthSepConv(kernel=[3, 3], stride=1, depth=128),
    DepthSepConv(kernel=[3, 3], stride=2, depth=256),
    DepthSepConv(kernel=[3, 3], stride=1, depth=256),
    DepthSepConv(kernel=[3, 3], stride=2, depth=512),
    DepthSepConv(kernel=[3, 3], stride=1, depth=512),
    DepthSepConv(kernel=[3, 3], stride=1, depth=512),
    DepthSepConv(kernel=[3, 3], stride=1, depth=512),
    DepthSepConv(kernel=[3, 3], stride=1, depth=512),
    DepthSepConv(kernel=[3, 3], stride=1, depth=512),
    DepthSepConv(kernel=[3, 3], stride=2, depth=1024),
    DepthSepConv(kernel=[3, 3], stride=1, depth=1024)
]

 

  • 卷积细节定义

以下是主体的网络结构,调用上述结构,通过for循环画网络。【网络每一层的更为细节的描述】

def mobilenet_v1_base(inputs,
                      final_endpoint='Conv2d_13_pointwise',
                      min_depth=8,
                      depth_multiplier=1.0,
                      conv_defs=None,
                      output_stride=None,
                      scope=None):
  """Mobilenet v1.

  Constructs a Mobilenet v1 network from inputs to the given final endpoint.

  Args:
    inputs: a tensor of shape [batch_size, height, width, channels].
    final_endpoint: specifies the endpoint to construct the network up to. It
      can be one of 
['Conv2d_0', 'Conv2d_1_pointwise', 'Conv2d_2_pointwise', 'Conv2d_3_pointwise', 'Conv2d_4_pointwise', 'Conv2d_5_pointwise', 'Conv2d_6_pointwise', 'Conv2d_7_pointwise', 'Conv2d_8_pointwise', 'Conv2d_9_pointwise', 'Conv2d_10_pointwise', 'Conv2d_11_pointwise', 'Conv2d_12_pointwise', 'Conv2d_13_pointwise'
]. min_depth: Minimum depth value (number of channels) for all convolution ops. Enforced when depth_multiplier < 1, and not an active constraint when depth_multiplier >= 1. depth_multiplier: Float multiplier for the depth (number of channels) for all convolution ops. The value must be greater than zero. Typical usage will be to set this value in (0, 1) to reduce the number of parameters or computation cost of the model. conv_defs: A list of ConvDef namedtuples specifying the net architecture. output_stride: An integer that specifies the requested ratio of input to output spatial resolution. If not None, then we invoke atrous convolution if necessary to prevent the network from reducing the spatial resolution of the activation maps. Allowed values are 8 (accurate fully convolutional mode), 16 (fast fully convolutional mode), 32 (classification mode). scope: Optional variable_scope. Returns: tensor_out: output tensor corresponding to the final_endpoint. end_points: a set of activations for external use, for example summaries or losses. Raises: ValueError: if final_endpoint is not set to one of the predefined values, or depth_multiplier <= 0, or the target output_stride is not allowed.
""" depth = lambda d: max(int(d * depth_multiplier), min_depth) end_points = {} # Used to find thinned depths for each layer. if depth_multiplier <= 0: raise ValueError('depth_multiplier is not greater than zero.') if conv_defs is None: conv_defs = _CONV_DEFS  # ----> if output_stride is not None and output_stride not in [8, 16, 32]: raise ValueError('Only allowed output_stride values are 8, 16, 32.') with tf.variable_scope(scope, 'MobilenetV1', [inputs]): with slim.arg_scope([slim.conv2d, slim.separable_conv2d], padding='SAME'): # The current_stride variable keeps track of the output stride of the # activations, i.e., the running product of convolution strides up to the # current network layer. This allows us to invoke atrous convolution # whenever applying the next convolution would result in the activations # having output stride larger than the target output_stride. current_stride = 1 # The atrous convolution rate parameter. rate = 1 net = inputs for i, conv_def in enumerate(conv_defs): end_point_base = 'Conv2d_%d' % i if output_stride is not None and current_stride == output_stride: # If we have reached the target output_stride, then we need to employ # atrous convolution with stride=1 and multiply the atrous rate by the # current unit's stride for use in subsequent layers. layer_stride = 1 layer_rate = rate rate *= conv_def.stride else: layer_stride = conv_def.stride layer_rate = 1 current_stride *= conv_def.stride if isinstance(conv_def, Conv): end_point = end_point_base net = slim.conv2d(net, depth(conv_def.depth), conv_def.kernel, stride=conv_def.stride, normalizer_fn=slim.batch_norm, scope=end_point) end_points[end_point] = net if end_point == final_endpoint: return net, end_points elif isinstance(conv_def, DepthSepConv): end_point = end_point_base + '_depthwise' # By passing filters=None # separable_conv2d produces only a depthwise convolution layer net = slim.separable_conv2d(net, None, conv_def.kernel, depth_multiplier=1, stride=layer_stride, rate=layer_rate, normalizer_fn=slim.batch_norm, scope=end_point) end_points[end_point] = net if end_point == final_endpoint: return net, end_points end_point = end_point_base + '_pointwise' net = slim.conv2d(net, depth(conv_def.depth), [1, 1], stride=1, normalizer_fn=slim.batch_norm, scope=end_point) end_points[end_point] = net if end_point == final_endpoint: return net, end_points else: raise ValueError('Unknown convolution type %s for layer %d' % (conv_def.ltype, i)) raise ValueError('Unknown final endpoint %s' % final_endpoint)

 

 

三、空间计算 

  • 参数计算

注解中,查看下全连接层到底占用了多少空间。

1000*1024=1024000 params

3185088/1024000=3.11【占模型比重约24.4%】

1800144/1024000=1.76【占模型比重约36.3%】

若全连接层改为1024*100,则会有10M左右的压缩空间。

 

  • 参数详情
"""MobileNet v1.

MobileNet is a general architecture and can be used for multiple use cases.
Depending on the use case, it can use different input layer size and different
head (for example: embeddings, localization and classification).

As described in https://arxiv.org/abs/1704.04861.

  MobileNets: Efficient Convolutional Neural Networks for
    Mobile Vision Applications
  Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang,
    Tobias Weyand, Marco Andreetto, Hartwig Adam

100% Mobilenet V1 (base) with input size 224x224:

See mobilenet_v1()

Layer                                                     params           macs
--------------------------------------------------------------------------------
MobilenetV1/Conv2d_0/Conv2D:                                 864      10,838,016
MobilenetV1/Conv2d_1_depthwise/depthwise:                    288       3,612,672
MobilenetV1/Conv2d_1_pointwise/Conv2D:                     2,048      25,690,112
MobilenetV1/Conv2d_2_depthwise/depthwise:                    576       1,806,336
MobilenetV1/Conv2d_2_pointwise/Conv2D:                     8,192      25,690,112
MobilenetV1/Conv2d_3_depthwise/depthwise:                  1,152       3,612,672
MobilenetV1/Conv2d_3_pointwise/Conv2D:                    16,384      51,380,224
MobilenetV1/Conv2d_4_depthwise/depthwise:                  1,152         903,168
MobilenetV1/Conv2d_4_pointwise/Conv2D:                    32,768      25,690,112
MobilenetV1/Conv2d_5_depthwise/depthwise:                  2,304       1,806,336
MobilenetV1/Conv2d_5_pointwise/Conv2D:                    65,536      51,380,224
MobilenetV1/Conv2d_6_depthwise/depthwise:                  2,304         451,584
MobilenetV1/Conv2d_6_pointwise/Conv2D:                   131,072      25,690,112
MobilenetV1/Conv2d_7_depthwise/depthwise:                  4,608         903,168
MobilenetV1/Conv2d_7_pointwise/Conv2D:                   262,144      51,380,224
MobilenetV1/Conv2d_8_depthwise/depthwise:                  4,608         903,168
MobilenetV1/Conv2d_8_pointwise/Conv2D:                   262,144      51,380,224
MobilenetV1/Conv2d_9_depthwise/depthwise:                  4,608         903,168
MobilenetV1/Conv2d_9_pointwise/Conv2D:                   262,144      51,380,224
MobilenetV1/Conv2d_10_depthwise/depthwise:                 4,608         903,168
MobilenetV1/Conv2d_10_pointwise/Conv2D:                  262,144      51,380,224
MobilenetV1/Conv2d_11_depthwise/depthwise:                 4,608         903,168
MobilenetV1/Conv2d_11_pointwise/Conv2D:                  262,144      51,380,224
MobilenetV1/Conv2d_12_depthwise/depthwise:                 4,608         225,792
MobilenetV1/Conv2d_12_pointwise/Conv2D:                  524,288      25,690,112
MobilenetV1/Conv2d_13_depthwise/depthwise:                 9,216         451,584
MobilenetV1/Conv2d_13_pointwise/Conv2D:                1,048,576      51,380,224
--------------------------------------------------------------------------------
Total:                                                 3,185,088     567,716,352


75% Mobilenet V1 (base) with input size 128x128:

See mobilenet_v1_075()

Layer                                                     params           macs
--------------------------------------------------------------------------------
MobilenetV1/Conv2d_0/Conv2D:                                 648       2,654,208
MobilenetV1/Conv2d_1_depthwise/depthwise:                    216         884,736
MobilenetV1/Conv2d_1_pointwise/Conv2D:                     1,152       4,718,592
MobilenetV1/Conv2d_2_depthwise/depthwise:                    432         442,368
MobilenetV1/Conv2d_2_pointwise/Conv2D:                     4,608       4,718,592
MobilenetV1/Conv2d_3_depthwise/depthwise:                    864         884,736
MobilenetV1/Conv2d_3_pointwise/Conv2D:                     9,216       9,437,184
MobilenetV1/Conv2d_4_depthwise/depthwise:                    864         221,184
MobilenetV1/Conv2d_4_pointwise/Conv2D:                    18,432       4,718,592
MobilenetV1/Conv2d_5_depthwise/depthwise:                  1,728         442,368
MobilenetV1/Conv2d_5_pointwise/Conv2D:                    36,864       9,437,184
MobilenetV1/Conv2d_6_depthwise/depthwise:                  1,728         110,592
MobilenetV1/Conv2d_6_pointwise/Conv2D:                    73,728       4,718,592
MobilenetV1/Conv2d_7_depthwise/depthwise:                  3,456         221,184
MobilenetV1/Conv2d_7_pointwise/Conv2D:                   147,456       9,437,184
MobilenetV1/Conv2d_8_depthwise/depthwise:                  3,456         221,184
MobilenetV1/Conv2d_8_pointwise/Conv2D:                   147,456       9,437,184
MobilenetV1/Conv2d_9_depthwise/depthwise:                  3,456         221,184
MobilenetV1/Conv2d_9_pointwise/Conv2D:                   147,456       9,437,184
MobilenetV1/Conv2d_10_depthwise/depthwise:                 3,456         221,184
MobilenetV1/Conv2d_10_pointwise/Conv2D:                  147,456       9,437,184
MobilenetV1/Conv2d_11_depthwise/depthwise:                 3,456         221,184
MobilenetV1/Conv2d_11_pointwise/Conv2D:                  147,456       9,437,184
MobilenetV1/Conv2d_12_depthwise/depthwise:                 3,456          55,296
MobilenetV1/Conv2d_12_pointwise/Conv2D:                  294,912       4,718,592
MobilenetV1/Conv2d_13_depthwise/depthwise:                 6,912         110,592
MobilenetV1/Conv2d_13_pointwise/Conv2D:                  589,824       9,437,184
--------------------------------------------------------------------------------
Total:                                                 1,800,144     106,002,432

"""

 

 

Continue...

解决直接运行如何解决各种配置问题。

 

posted @ 2017-10-05 07:23  郝壹贰叁  阅读(692)  评论(0)    收藏  举报