leetcode-703-easy
Kth Largest Element in a Stream
Design a class to find the kth largest element in a stream. Note that it is the kth largest element in the sorted order, not the kth distinct element.
Implement KthLargest class:
KthLargest(int k, int[] nums) Initializes the object with the integer k and the stream of integers nums.
int add(int val) Appends the integer val to the stream and returns the element representing the kth largest element in the stream.
Example 1:
Input
["KthLargest", "add", "add", "add", "add", "add"]
[[3, [4, 5, 8, 2]], [3], [5], [10], [9], [4]]
Output
[null, 4, 5, 5, 8, 8]
Explanation
KthLargest kthLargest = new KthLargest(3, [4, 5, 8, 2]);
kthLargest.add(3); // return 4
kthLargest.add(5); // return 5
kthLargest.add(10); // return 5
kthLargest.add(9); // return 8
kthLargest.add(4); // return 8
Constraints:
1 <= k <= 104
0 <= nums.length <= 104
-104 <= nums[i] <= 104
-104 <= val <= 104
At most 104 calls will be made to add.
It is guaranteed that there will be at least k elements in the array when you search for the kth element.
思路一:刚开始用链表实现,插入是遍历查找对比后插入,发现超时了。然后用二分法改进插入的算法,发现还是超时。
public KthLargest(int k, int[] nums) {
this.k = k;
Arrays.sort(nums);
for (int num : nums) {
list.add(num);
}
}
public int add(int val) {
int low = 0;
int high = list.size() - 1;
int mid = 0;
while (low < high) {
mid = low + (high - low) / 2;
if (list.get(mid) == val) {
low = mid;
break;
} else if (list.get(mid) > val) {
high = mid - 1;
} else {
low = mid + 1;
}
}
if (list.size() > 0 && list.get(low) < val) {
list.add(low + 1, val);
} else {
list.add(low, val);
}
return list.get(list.size() - k);
}
思路二:看了一下官方解答,用一个优先队列维护 k 个数字,对于小于第 k 个数字的值,直接抛弃
PriorityQueue<Integer> queue;
private int k;
public KthLargest(int k, int[] nums) {
this.k = k;
queue = new PriorityQueue<>();
for (int num : nums) {
add(num);
}
}
public int add(int val) {
queue.offer(val);
if (queue.size() > k) {
queue.poll();
}
return queue.peek();
}