论文阅读 | CSNet
CSNet
HIT TIP 2020
Architecture
Overview
Highlights:
- end-to-end mapping
- encoder-decoder
- block-based compressed sensing (BCS)
- non-overlapping. (有什么好处,为什么一直强调)
3 stages:
- Conpressied Sampling
- Initial Reconstruction
- Non-linear Signal Reconstruction
Sampling Network
Refered as \(\mathcal{S}\).
Training Phase
学习采样矩阵并获取 CS 测量值。端到端地构建采样网络与重建网络,联合训练并优化 (joint optimization),区别于 ISTA-Net 针对已知 Sampling Matrix 进行重建。
Application Phase
Used as an encoder to generate CS measurements.
对 \(B\times B\times l\) 的块,这里用 \(\text{stride}= B\) 的卷积代替了采样矩阵。不需要学习数据的偏移,即
bias=False
采样矩阵 \(\Phi_B \in \mathbb{R}^{n_B\times lB^2}\),特征图共 \(n_B=\lfloor \frac{M}{N}lB^2\rfloor\) 个。\(l\) 取 1 即为灰度图。
Reconstruction Network
Refered as \(\mathcal{R}\).
where \(\mathbf{y}\) the output of \(\mathcal{S}\), \(\mathcal{D}\) the deep construction network, \(\mathcal{I}\) the initial reconstruction network.
Initial Reconstruction Network
“Given the CS measurements, BCS usually uses a pseudo-inverse matrix to obtain the initial reconstructed image.”
指出,本质上实在求 CS 采样矩阵的伪逆。(但是由 \(M \ll N\),问题欠定,如何确保风格一致呢)
CS 正问题如下
因此对第 \(j\) 块的 CS 测量值 \(\mathbf{y}_j^{lB^2}\)
\(\tilde{\Phi}_B\) refered as \(\tilde{\mathcal{I}}\),如下
torch.nn.Conv2d(
in_channels=n_B,
out_channels=lB^2,
kernel_size=1,
stride=1,
padding=0,
biad=False
)
然后进行 reshape 和 concat 得到 \(\tilde{\mathbf{x}}=\mathcal{I}(\mathbf{y})\)
这里还提到,“makes our method can make full use of both intra-block and interblock information for better reconstruction.” (别的网络做不到吗)
Deep Reconstruction Network
相较于 ISTA-Net 和 AMP-Net,多了残差连接。
Training
介绍了二进制采样矩阵 (0, 1) 和极性采样矩阵 (+, -) 的训练方式。
Loss Function
分别对 \(\mathcal{I}(\cdot)\) 和 \(\mathcal{R}(\cdot)\) 应用 \(\ell_2\) 损失。