CF1497E1 Square-free division (easy version)
Square-free division (easy version)
This is the easy version of the problem. The only difference is that in this version k=0.
There is an array a1,a2,…,an of n positive integers. You should divide it into a minimal number of continuous segments, such that in each segment there are no two numbers (on different positions), whose product is a perfect square.
Moreover, it is allowed to do at most k such operations before the division: choose a number in the array and change its value to any positive integer. But in this version k=0, so it is not important.
What is the minimum number of continuous segments you should use if you will make changes optimally?
Input
The first line contains a single integer t (1≤t≤1000) — the number of test cases.
The first line of each test case contains two integers n, k (1≤n≤2⋅105, k=0).
The second line of each test case contains n integers a1,a2,…,an (1≤ai≤107).
It's guaranteed that the sum of n over all test cases does not exceed 2⋅105.
Output
For each test case print a single integer — the answer to the problem.
解题思路
学习了一波官方题解的思路
大致思路为,对于同一分段中的两个数,他们的因子中任意一对因子对的因子数奇偶性不同(否则就可以将所有的因子分为相等的两部分,两个数的乘积即为一部分的平方)。所以我们只要统计每个数的因子的奇偶的情况,然后再贪心地做判断就可以了。
还是像上次一样给出附有我的思路的代码吧
1 #include <bits/stdc++.h> 2 using namespace std; 3 using ll = long long; 4 vector<int> primes; 5 const int MAXN = 1e7; 6 int mind[MAXN + 10]; 7 void pre() //统计对于范围内的每一个数,它最小的因子是多少 8 { 9 for (int i = 2; i < MAXN; i++) 10 { 11 if (mind[i] == 0) //如果一个数没有被统计过,说明他是质数,其自身为其最小因子 12 { 13 primes.emplace_back(i); 14 mind[i] = i; 15 } 16 for (auto& x : primes) //将这个数的2,3,5···倍的数的最小因子标记为2,3,5···实现函数目标 17 { 18 if (x > mind[i] || x * i > MAXN) //范围 19 break; 20 mind[x * i] = x; 21 } 22 } 23 } 24 void solve() 25 { 26 int n, k; 27 cin >> n >> k; 28 vector<int> a(n, 1); 29 for (int i = 0; i < n; i++) 30 { 31 int x; 32 cin >> x; 33 int cnt = 0; //统计当前因子的树木 34 int last = 0; //统计当前因子是多少 35 while (x > 1) //循环找出输入x的每一个因子 36 { 37 int p = mind[x]; //当前的最小因子 38 if (last == p) //如果当前数x的最小因子不变,将cnt++ 39 cnt++; 40 else //如果因子变了,进入else进行统计 41 { 42 if (cnt % 2 == 1) //如果该因子的数量为奇数,将a[i]*last,将last统计到a[i]中 43 a[i] *= last; 44 last = p; //更新为新因子 45 cnt = 1; //重置 46 } 47 x /= p; //这个因子统计过了,将x除以p 48 } 49 if (cnt % 2 == 1) //因为最后一次循环时不会进入else统计,所以要在循坏外统计一次 50 a[i] *= last; 51 } 52 //输出部分 53 int pos = 0; //上一次分段的位置 54 int ans = 1; //结果 55 map<int, int> last; //这个数之前的分段 56 for (int i = 0; i < n; i++) 57 { 58 if (last.find(a[i]) != last.end() && last[a[i]] >= pos) //找到了一个多余因子相同,且在上一段中的数,说明这两个数相乘后为完全平方数,进行分段操作 59 { 60 ans++; //++ 61 pos = i; //更新分段位置 62 } 63 last[a[i]] = i; //将这个数加入总数组 64 } 65 cout << ans << "\n"; 66 } 67 int main() 68 { 69 ios::sync_with_stdio(false); 70 cin.tie(0); 71 72 pre(); 73 int t; 74 cin >> t; 75 while (t--) 76 { 77 solve(); 78 } 79 return 0; 80 }
这道题似乎还有一种用set的解法,且等我去学习一波

浙公网安备 33010602011771号